This patch adds two macros to declare per-type allocators:
- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)
When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.
The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.
It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)
There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.
Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
This helps make the overall codebase consistent. `class_name()` in
`Kernel` is always `StringView`, but not elsewhere.
Additionally, this results in the `strlen` (which needs to be done
when printing or other operations) always being computed at
compile-time.
Both at the same time because many of them call construct() in call()
and I'm not keen on adding a bunch of temporary plumbing to turn
exceptions into throw completions.
Also changes the return value of construct() to Object* instead of Value
as it always needs to return an object; allowing an arbitrary Value is a
massive foot gun.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Almost a year after first working on this, it's finally done: an
implementation of Promises for LibJS! :^)
The core functionality is working and closely following the spec [1].
I mostly took the pseudo code and transformed it into C++ - if you read
and understand it, you will know how the spec implements Promises; and
if you read the spec first, the code will look very familiar.
Implemented functions are:
- Promise() constructor
- Promise.prototype.then()
- Promise.prototype.catch()
- Promise.prototype.finally()
- Promise.resolve()
- Promise.reject()
For the tests I added a new function to test-js's global object,
runQueuedPromiseJobs(), which calls vm.run_queued_promise_jobs().
By design, queued jobs normally only run after the script was fully
executed, making it improssible to test handlers in individual test()
calls by default [2].
Subsequent commits include integrations into LibWeb and js(1) -
pretty-printing, running queued promise jobs when necessary.
This has an unusual amount of dbgln() statements, all hidden behind the
PROMISE_DEBUG flag - I'm leaving them in for now as they've been very
useful while debugging this, things can get quite complex with so many
asynchronously executed functions.
I've not extensively explored use of these APIs for promise-based
functionality in LibWeb (fetch(), Notification.requestPermission()
etc.), but we'll get there in due time.
[1]: https://tc39.es/ecma262/#sec-promise-objects
[2]: https://tc39.es/ecma262/#sec-jobs-and-job-queues