The IsValidIntegerIndex AO performs the checks we are interested in. The
manual implementation we currently have will no longer compile once the
resizable ArrayBuffer spec is implemented. The AO will be updated with
the spec implementation, so let's use it now to avoid breakage.
This renames IntegerIndexedElementGet to TypedArrayGetElement, and
IntegerIndexedElementSet to TypedArraySetElement.
This also renames the indexedPosition variable inside these method
definitions to byteIndexInBuffer.
These are part of a couple editorial changes in the ECMA-262 spec. See:
https://github.com/tc39/ecma262/commit/03e4410https://github.com/tc39/ecma262/commit/a1a4d48
The remainder of the changes in those commits apply to the resizable
ArrayBuffer spec, which is not implemented in LibJS as of this commit.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
We previously had a concept of unique shapes, which meant that they
couldn't be shared between multiple objects.
Object shapes became unique in three situations:
- They were the shape of the global object.
- They had more than 100 properties added to them.
- They had one or more properties deleted from them.
Unfortunately, unique shapes presented an annoying problem for inline
caches, and we added a "unique shape serial number" for being able to
tell that a unique shape had been mutated.
This patch gets rid of the concept of unique shapes, simplifying all
the caching code, since inline caches can now simply perform a shape
check and then we're good.
To make this possible, we now have the concept of delete transitions,
which occur when a property is deleted from a shape.
Note that this patch by itself introduces a performance regression in
some situtations, since we now create a lot more shapes, and marking
their property keys can be very heavy. This will be addressed in a
subsequent patch.
These are just like Uint8Array, except Put values have to be clamped
in the 0..255 range.
Takes CPU usage from 40% to 30% on the "Canvas Cycle" demo at
http://www.effectgames.com/demos/canvascycle/ :^)
This patch makes IteratorRecord an Object. Although it's not exposed to
author code, this does allow us to store it in a VM register.
Now that we can store it in a VM register, we don't need to convert it
back and forth between IteratorRecord and Object when accessing it from
bytecode.
The big win here is avoiding 3 [[Get]] accesses on every iteration step
of for..of loops. There are also a bunch of smaller efficiencies gained.
20% speed-up on this microbenchmark:
function go(a) {
for (const p of a) {
}
}
const a = [];
a.length = 1_000_000;
go(a);
(Instead of MarkedVector<Value>.) This is a step towards not storing
argument lists in MarkedVector<Value> at all. Note that they still end
up in MarkedVectors since that's what ExecutionContext has.
By checking a few conditions up front, we can do a very specialized
direct access into the underlying byte storage for 8/16/32-bit typed
arrays. This relies on the fact that typed arrays are guaranteed to
be type-appropriately aligned within the underlying array buffer.
This patch makes it possible for JS::Object::internal_set() to populate
a CacheablePropertyMetadata, and uses this to implement a basic
monomorphic cache for the most common form of property write access.
Using ErrorType::ReferencePrimitiveSetProperty the errors for primitives
now look like "Cannot set property 'foo' of number '123'".
The strict-mode-errors test has been adjusted and re-enabled.
There are a lot of native C++ functions that will be used by both the
bytecode interpreter and jitted code. Let's put them in their own file
instead of having them in Interpreter.cpp.