Instead of emitting a Text item with the "should_force_break" flag set
to true, newlines in newline-preserving text content now timply turn
into ForcedBreak items. This makes the <pre> element work again.
Collect all the preceding block-level siblings whose vertical margins
are collapsible. Both margin-top and margin-bottom now (previously,
we only considered the margin-bottom of siblings.)
Use the right margin in part-negative and all-negative situations.
CSS floats are now emitted by the InlineLevelIterator. When this
happens, IFC coordinates with the parent BFC to float the box to the
side, using the current LineBuilder state for vertical placement.
This makes the "instructions" text on Acid3 render as a single
contiguous flow of inline content.
The old mode names, while mechanically accurate, didn't really reflect
their relationship to the CSS specifications.
This patch renames them as follows:
Default => Normal
AllPossibleLineBreaks => MinContent
OnlyRequiredLineBreaks => MaxContent
There's also now an explainer comment with the LayoutMode enum about the
specific implications of layout in each mode.
Since there is currently no easy way to handle rotations and skews
with LibGfx this only implements translation and scaling by first
constructing a general 4x4 transformation matrix like outlined in
the css-transforms-1 specification. This is then downgraded to a
Gfx::AffineTransform in order to transform the destination rectangle
used with draw_scaled_bitmap()
While rotation would be nice this already looks pretty good :^)
The previous implementation used relative X offsets for both left and
right-side floats. This made right-side floats super awkward, since we
could only determine their X position once the width of the BFC root was
known, and for BFC roots with automatic width, this was not even working
at all most of the time.
This patch changes the way we deal with floats so that BFC keeps track
of the offset-from-edge for each float. The offset is the distance from
the BFC root edge (left or right, depending on float direction) to the
"innermost" margin edge of the floating box.
Floating box are now laid out in two passes: while going through the
normal flow layout, we put floats in their *static* position (i.e the
position they would have occupied if they weren't floating) and then
update the Y position value to the final one.
The second pass occurs later on, when the BFC root has had its width
assigned by the parent context. Once we know the root width, we can
set the X position value of floating boxes. (Because the X position of
right-side floats is relative to the right edge of the BFC root.)
This is preparation for allowing blocks with their own internal BFC to
flow around floating boxes in the parent BFC.
Note that IFC still has the available_space_for_line() API, which
returns space available within the IFC's own containing block, while the
BFC available_space_for_line() returns space available within its root.
If there's some non-block-level box (like an SVG element of some kind)
between to blocks, just skip over the non-block for purposes of margin
collapsing. This is basically a hack, and something we'll need to
improve as part of our general SVG support.
When calculating the intrinsic width of a block-level box, we were
previously measuring the content boxes of children. This meant that
shrink-to-fit sized blocks didn't gain enough width to contain children
with horizontal padding and/or border.
We were subtracting the content width of right-floated boxes from their
X position for no reason. Removing this makes floats snuggle up to each
other on the right side. :^)
Previously, these were added during layout. This didn't fit into the new
world where layout doesn't mutate the tree incrementally, so this patch
adds logic to Layout::TreeBuilder for adding a marker to each list-item
box after its children have been constructed.
This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
The purpose of this new object will be to keep track of various states
during an ongoing layout.
Until now, we've been updating layout tree nodes as we go during layout,
which adds an invisible layer of implicit serialization to the whole
layout system.
My idea with FormattingState is that running layout will produce a
result entirely contained within the FormattingState object. At the end
of layout, it can then be applied to the layout tree, or simply queried
for some metrics we were trying to determine.
When doing subtree layouts to determine intrinsic sizes, we will
eventually be able to clone the current FormattingState, and run the
subtree layout in isolation, opening up opportunities for parallelism.
This first patch doesn't go very far though, it merely adds the object
as a skeleton class, and makes sure the root BFC has one. :^)
Normally we don't layout position:absolute elements until after the
parent formatting context has assigned dimensions to the current
formatting context's root box.
However, some of our parent contexts (especially FFC) don't do this
reliably, which makes position:absolute children have 0x0 dimensions.
Hack this for now by making ~BFC() pretend that the parent assigned
dimensions if it hadn't done it already.
Nobody makes undefined Lengths now, (although actually removing
Undefined will come in a later commit) so we can remove this parameter,
and `resolved_or_auto()`/`resolved_or_zero()`.
Until now, some formatting contexts (BFC in particular) have been
assigning size to the root box. This is really the responsibility of the
parent formatting context, so let's stop doing it.
To keep position:absolute working, parent formatting contexts now notify
child contexts when the child's root box has been sized. (Note that the
important thing here is for the child root to have its final used height
before it's able to place bottom-relative boxes.)
This breaks flexbox layout in some ways, but we'll have to address those
by improving the spec compliance of FFC.)
BFC currently has a number of architectural issues due to it being
responsible for setting the dimensions of the BFC root.
This patch moves the logic for setting up the ICB from BFC to Document.
This property represents the CSS content size, so let's reduce ambiguity
by using the spec terminology.
We also bring a bunch of related functions along for the ride.
Most of the time, we cannot resolve a `calc()` expression until we go to
use it. Since any `<length-percentage>` can legally be a `calc
()`, let's store it in `LengthPercentage` rather than make every single
user care about this distinction.
Block placement is now divided into a vertical and horizontal step. The
vertical step runs before formatting boxes internally. The horizontal
step still runs after (since we may need the final width value.)
This solves a long-standing architectural problem where IFC didn't know
its origin Y position within the BFC root box. This is required for
figuring out how to flow around floating objects. (Floating objects are
always relative to the BFC root.)
If we run out of horizontal space when placing floating objects,
we now perform a "break" and continue with a new line of floats
below the bottommost margin edge of the current line.
This is definitely not 100% to-spec yet, but a huge improvement
on ACID1 already. :^)
This patch adds a BFC::FloatSideData struct so we can contain left and
right floating object layout state in a struct. This is preparation for
adding more per-side state.
Despite looking like it was still needed, it was only used for passing
to other calls to Length::resolved() recursively. This makes the
various `foo.resolved().resolved()` calls a lot less awkward.
(Though, still quite awkward.)
I think we'd need to separate calculated lengths out to properly tidy
these calls up, but one yak at a time. :^)
A lot of this is quite ugly, but it should only be so until I remove
Length::Type::Percentage entirely. (Which should happen later in this
PR, otherwise, yell at me!) For now, a lot of things have to be
resolved twice, first from a LengthPercentage to a Length, and then
from a Length to a pixel one.
This was a hack to percentages within tables relative to the nearest
table-row ancestor instead of the nearest table container.
That didn't actually make sense, so this patch simply removes the hack
in favor of containing_block()->width().
We're using the outermost right and bottom child edges to determine the
width and height of the ICB. However, since these edges are *within* the
respective child's rectangle, we have to add 1 when turning them into
width and height values.
This fixes an issue where scrolling a document would shrink its viewport
rect by 1 pixel (on both axes) on every scroll step.