When receiving a SYN packet for a connection that's in the "SYN
received" state we should ignore the duplicate SYN packet instead of
closing the connection. This can happen when we didn't accept the
connection in time and our peer has sent us another SYN packet because
it thought that the initial SYN packet was lost.
Previously we'd allocate buffers when sending packets. This patch
avoids these allocations by using the NetworkAdapter's packet queue.
At the same time this also avoids copying partially constructed
packets in order to prepend Ethernet and/or IPv4 headers. It also
properly truncates UDP and raw IP packets.
Occasionally we'll see messages in the serial console like:
handle_tcp: unexpected flags in FinWait1 state
In these cases it would be nice to know what flags we are receiving that
we aren't expecting.
Previously we didn't retransmit lost TCP packets which would cause
connections to hang if packets were lost. Also we now time out
TCP connections after a number of retransmission attempts.
This wakes up NetworkTask every 500 milliseconds so that it can send
pending delayed TCP ACKs and isn't forced to send all of them early
when it goes to sleep like it did before.
When establishing the connection we should send ACKs right away so
as to not delay the connection process. This didn't previously
matter because we'd flush all delayed ACKs when NetworkTask waits
for incoming packets.
When we receive a TCP packet with a sequence number that is not what
we expected we have lost one or more packets. We can signal this to
the sender by sending a TCP ACK with the previous ack number so that
they can resend the missing TCP fragments.
Previously we'd process TCP packets in whatever order we received
them in. In the case where packets arrived out of order we'd end
up passing garbage to the userspace process.
This was most evident for TLS connections:
courage:~ $ git clone https://github.com/SerenityOS/serenity
Cloning into 'serenity'...
remote: Enumerating objects: 178826, done.
remote: Counting objects: 100% (1880/1880), done.
remote: Compressing objects: 100% (907/907), done.
error: RPC failed; curl 56 OpenSSL SSL_read: error:1408F119:SSL
routines:SSL3_GET_RECORD:decryption failed or bad record mac, errno 0
error: 1918 bytes of body are still expected
fetch-pack: unexpected disconnect while reading sideband packet
fatal: early EOF
fatal: fetch-pack: invalid index-pack output
An IP socket can now join a multicast group by using the
IP_ADD_MEMBERSHIP sockopt, which will cause it to start receiving
packets sent to the multicast address, even though this address does
not belong to this host.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
In preparation for marking BlockingResult [[nodiscard]], there are a few
places that perform infinite waits, which we never observe the result of
the wait. Instead of suppressing them, add an alternate function which
returns void when performing and infinite wait.
* We don't have to lock the "all IPv4 sockets" in exclusive mode, shared mode is
enough for just reading the list (as opposed to modifying it).
* We don't have to lock socket's own lock at all, the IPv4Socket::did_receive()
implementation takes care of this.
* Most importantly, we don't have to hold the "all IPv4 sockets" across the
IPv4Socket::did_receive() call(s). We can copy the current ICMP socket list
while holding the lock, then release the lock, and then call
IPv4Socket::did_receive() on all the ICMP sockets in our list.
These changes fix a deadlock triggered by receiving ICMP messages when using tap
networking setup (as opposed to QEMU's default user/SLIRP networking) on the host.
Problem:
- Many constructors are defined as `{}` rather than using the ` =
default` compiler-provided constructor.
- Some types provide an implicit conversion operator from `nullptr_t`
instead of requiring the caller to default construct. This violates
the C++ Core Guidelines suggestion to declare single-argument
constructors explicit
(https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit).
Solution:
- Change default constructors to use the compiler-provided default
constructor.
- Remove implicit conversion operators from `nullptr_t` and change
usage to enforce type consistency without conversion.
Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
Fix some problems with join blocks where the joining thread block
condition was added twice, which lead to a crash when trying to
unblock that condition a second time.
Deferred block condition evaluation by File objects were also not
properly keeping the File object alive, which lead to some random
crashes and corruption problems.
Other problems were caused by the fact that the Queued state didn't
handle signals/interruptions consistently. To solve these issues we
remove this state entirely, along with Thread::wait_on and change
the WaitQueue into a BlockCondition instead.
Also, deliver signals even if there isn't going to be a context switch
to another thread.
Fixes#4336 and #4330
This makes the Scheduler a lot leaner by not having to evaluate
block conditions every time it is invoked. Instead evaluate them as
the states change, and unblock threads at that point.
This also implements some more waitid/waitpid/wait features and
behavior. For example, WUNTRACED and WNOWAIT are now supported. And
wait will now not return EINTR when SIGCHLD is delivered at the
same time.
This adds the ability to pass a pointer to kernel thread/process.
Also add the ability to use a closure as thread function, which
allows passing information to a kernel thread more easily.
This fixes an issue where making a TCP connection to localhost didn't
work correctly since the loopback interface is currently synchronous.
(Sending something to localhost would enqueue a packet on the same
interface and then immediately wake the network task to process that
packet.)
This was preventing the TCP handshake from working correctly with
localhost since we'd send out the SYN packet before moving to the
SynSent state. The lock is now held long enough for this operation
to be atomic.
Similar to Process, we need to make Thread refcounted. This will solve
problems that will appear once we schedule threads on more than one
processor. This allows us to hold onto threads without necessarily
holding the scheduler lock for the entire duration.
Since the receiving socket isn't yet known at packet receive time,
keep timestamps for all packets.
This is useful for keeping statistics about in-kernel queue latencies
in the future, and it can be used to implement SO_TIMESTAMP.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
The SI prefixes "k", "M", "G" mean "10^3", "10^6", "10^9".
The IEC prefixes "Ki", "Mi", "Gi" mean "2^10", "2^20", "2^30".
Let's use the correct name, at least in code.
Only changes the name of the constants, no other behavior change.
I originally defined the bytes() method for the String class, because it
made it obvious that it's a span of bytes instead of span of characters.
This commit makes this more consistent by defining a bytes() method when
the type of the span is known to be u8.
Additionaly, the cast operator to Bytes is overloaded for ByteBuffer and
such.
The Lock class still permits no reason, but for everything else
require a reason to be passed to Thread::wait_on. This makes it
easier to diagnose why a Thread is in Queued state.
This patch relaxes how we think about UDP packets being "for us" a bit;
the proper way to handle this would be to also check if the matched
socket has SO_BROADCAST set, but we don't have that :)
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().