O_EXEC is mentioned by POSIX, so let's have it. Currently, it is only used
inside the kernel to ensure the process has the right permissions when opening
an executable.
At the moment, the actual flags are ignored, but we correctly propagate them all
the way from the original mount() syscall to each custody that resides on the
mounted FS.
No need to pass around RefPtr<>s and NonnullRefPtr<>s and no need to
heap-allocate them.
Also remove VFS::mount(NonnullRefPtr<FS>&&, StringView path) - it has been
unused for a long time.
If we're creating something that should have a different owner than the
current process's UID/GID, we need to plumb that all the way through
VFS down to the FS functions.
Cautiously use 5 as a limit for now so that we don't blow the stack.
This can be increased in the future if we are sure that we won't be
blowing the stack, or if the implementation is changed to not use
recursion :^)
Files opened with O_DIRECT will now bypass the disk cache in read/write
operations (though metadata operations will still hit the disk cache.)
This will allow us to test actual disk performance instead of testing
disk *cache* performance, if that's what we want. :^)
There's room for improvment here, we're very aggressively flushing any
dirty cache entries for the specific block before reading/writing that
block. This is done by walking the entire cache, which may be slow.
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)
It is now possible to unmount file systems from the VFS via `umount`.
It works via looking up the `fsid` of the filesystem from the `Inode`'s
metatdata so I'm not sure how fragile it is. It seems to work for now
though as something to get us going.
- You must now have superuser privileges to use mount().
- We now verify that the mount point is a valid path first, before
trying to find a filesystem on the specified device.
- Convert some dbgprintf() to dbg().
I was messing around with this to tell the compiler that these functions
always return the same value no matter how many times you call them.
It doesn't really seem to improve code generation and it looks weird so
let's just get rid of it.
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).
When encountering a symlink, we abandon the custody chain we've been working
on and start over with a new one (by recursing into a new resolution call.)
Caching symlinks in the custody model would be incredibly difficult to get
right with all the extra invalidation it would require, so let's just not.
The current working directory is now stored as a custody. Likewise for a
process executable file. This unbreaks /proc/PID/fd which has not been
working since we made the filesystem bigger.
This still needs a bunch of work, for instance when renaming or removing
a file somewhere, we have to update the relevant custody links.
A custody is kind of a directory entry abstraction that represents a single
entry in a parent directory that tells us the name of a child inode.
The idea here is for path resolution to produce a chain of custody objects.
Also run it across the whole tree to get everything using the One True Style.
We don't yet run this in an automated fashion as it's a little slow, but
there is a snippet to do so in makeall.sh.