ArrayBuffer no longer stores a plain ByteBuffer internally, but a
DataBlock instead, which encapsulated the ByteBuffer together with
information if it is shared or not.
The goal here is to allow Cell::initialize to return a ThrowCompletion,
to handle OOM for example. Cell.h will then need to include Completion.h
which must include Value.h. This currently can't happen because Value.h
includes BigInt.h, which in turn includes Cell.h. So we would have an
include cycle.
This removes BigInt.h from Value.h, as it is forward-declarable (it is
only referred to with a reference or pointer). Then the Value overload
for Cell::Visitor::visit is moved to Cell.h, and missing BigInt.h
includes as peppered as needed.
Three standalone Cell creation functions remain in the JS namespace:
- js_bigint()
- js_string()
- js_symbol()
All of them are leftovers from early iterations when LibJS still took
inspiration from JSC, which itself has jsString(). Nowadays, we pretty
much exclusively use static create() functions to construct types
allocated on the JS heap, and there's no reason to not do the same for
these.
Also change the return type from BigInt* to NonnullGCPtr<BigInt> while
we're here.
This is patch 1/3, replacement of js_string() and js_symbol() follow.
Instead we just use a specific constructor. With this set of
constructors using curly braces for constructing is highly recommended.
As then it will not do too many implicit conversions which could lead to
unexpected loss of data or calling the much slower double constructor.
Also to ensure we don't feed (Un)SignedBigInteger infinities we throw
RangeError earlier for Durations.
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
This is a manual but clean revert of all commits from #12595.
Adding a partial implementation of the resizable ArrayBuffer proposal
without implementing all the updates to TypedArray infrastructure that
is also covered by the spec introduced a bunch of crashes, so we
decided to revert it for now until a full implementation is completed.
This is a normative change in the ECMA-262 spec. See:
https://github.com/tc39/ecma262/commit/e7979fd
Note that this implements a FIXME in InitializeTypedArrayFromTypedArray,
now that shared array buffers are no longer a concern there. We already
have test coverage for the now-handled case.
The spec notes that this AO is unused by ECMA-262, but is provided for
ECMAScript hosts. Move the definition to a common location to allow
test-js to also use it.
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
This should be used instead of ArrayBuffer::create() in most places, as
it uses OrdinaryCreateFromConstructor to allow for a custom prototype.
The data block (ByteBuffer) is allocated separately and attached
afterwards, if we didn't fail due to OOM.