Before, some loader plugins implemented their own buffering (FLAC&MP3),
some didn't require any (WAV), and some didn't buffer at all (QOA). This
meant that in practice, while you could load arbitrary amounts of
samples from some loader plugins, you couldn't do that with some others.
Also, it was ill-defined how many samples you would actually get back
from a get_more_samples call.
This commit fixes that by introducing a layer of abstraction between the
loader and its plugins (because that's the whole point of having the
extra class!). The plugins now only implement a load_chunks() function,
which is much simpler to implement and allows plugins to play fast and
loose with what they actually return. Basically, they can return many
chunks of samples, where one chunk is simply a convenient block of
samples to load. In fact, some loaders such as FLAC and QOA have
separate internal functions for loading exactly one chunk. The loaders
*should* load as many chunks as necessary for the sample count to be
reached or surpassed (the latter simplifies loading loops in the
implementations, since you don't need to know how large your next chunk
is going to be; a problem for e.g. FLAC). If a plugin has no problems
returning data of arbitrary size (currently WAV), it can return a single
chunk that exactly (or roughly) matches the requested sample count. If a
plugin is at the stream end, it can also return less samples than was
requested! The loader can handle all of these cases and may call into
load_chunk multiple times. If the plugin returns an empty chunk list (or
only empty chunks; again, they can play fast and loose), the loader
takes that as a stream end signal. Otherwise, the loader will always
return exactly as many samples as the user requested. Buffering is
handled by the loader, allowing any underlying plugin to deal with any
weird sample count requirement the user throws at it (looking at you,
SoundPlayer!).
This (not accidentally!) makes QOA work in SoundPlayer.
`Stream` will be qualified as `AK::Stream` until we remove the
`Core::Stream` namespace. `IODevice` now reuses the `SeekMode` that is
defined by `SeekableStream`, since defining its own would require us to
qualify it with `AK::SeekMode` everywhere.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This doesn't have any immediate uses, but this adapts the code a bit
more to `Core::Stream` conventions (as most functions there use
NonnullOwnPtr to handle streams) and it makes it a bit clearer that this
pointer isn't actually supposed to be null. In fact, MP3LoaderPlugin
and FlacLoaderPlugin apparently forgot to check for that completely
before starting to decode data.
This now prepares all the needed (fallible) components before actually
constructing a LoaderPlugin object, so we are no longer filling them in
at an arbitrary later point in time.
`Bytes` is very slim, so the memory and/or performance gains from
passing it by reference isn't that big, and it passing it by value is
more compatible with xvalues, which is handy for things like
`::try_create(buffer.bytes())`.
When the visualization is set to "Album Cover", the player will now try
to load the embedded image. On failure, it defaults to a "Cover" image
file in the directory.
In Player::play_file_path, file_name_changed now needs to be executed
after that the loader have been set, to get the correct image.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
The file is now renamed to Queue.h, and the Resampler APIs with
LegacyBuffer are also removed. These changes look large because nobody
actually needs Buffer.h (or Queue.h). It was mostly transitive
dependencies on the massive list of includes in that header, which are
now almost all gone. Instead, we include common things like Sample.h
directly, which should give faster compile times as very few files
actually need Queue.h.
Previously, we were sending Buffers to the server whenever we had new
audio data for it. This meant that for every audio enqueue action, we
needed to create a new shared memory anonymous buffer, send that
buffer's file descriptor over IPC (+recfd on the other side) and then
map the buffer into the audio server's memory to be able to play it.
This was fine for sending large chunks of audio data, like when playing
existing audio files. However, in the future we want to move to
real-time audio in some applications like Piano. This means that the
size of buffers that are sent need to be very small, as just the size of
a buffer itself is part of the audio latency. If we were to try
real-time audio with the existing system, we would run into problems
really quickly. Dealing with a continuous stream of new anonymous files
like the current audio system is rather expensive, as we need Kernel
help in multiple places. Additionally, every enqueue incurs an IPC call,
which are not optimized for >1000 calls/second (which would be needed
for real-time audio with buffer sizes of ~40 samples). So a fundamental
change in how we handle audio sending in userspace is necessary.
This commit moves the audio sending system onto a shared single producer
circular queue (SSPCQ) (introduced with one of the previous commits).
This queue is intended to live in shared memory and be accessed by
multiple processes at the same time. It was specifically written to
support the audio sending case, so e.g. it only supports a single
producer (the audio client). Now, audio sending follows these general
steps:
- The audio client connects to the audio server.
- The audio client creates a SSPCQ in shared memory.
- The audio client sends the SSPCQ's file descriptor to the audio server
with the set_buffer() IPC call.
- The audio server receives the SSPCQ and maps it.
- The audio client signals start of playback with start_playback().
- At the same time:
- The audio client writes its audio data into the shared-memory queue.
- The audio server reads audio data from the shared-memory queue(s).
Both sides have additional before-queue/after-queue buffers, depending
on the exact application.
- Pausing playback is just an IPC call, nothing happens to the buffer
except that the server stops reading from it until playback is
resumed.
- Muting has nothing to do with whether audio data is read or not.
- When the connection closes, the queues are unmapped on both sides.
This should already improve audio playback performance in a bunch of
places.
Implementation & commit notes:
- Audio loaders don't create LegacyBuffers anymore. LegacyBuffer is kept
for WavLoader, see previous commit message.
- Most intra-process audio data passing is done with FixedArray<Sample>
or Vector<Sample>.
- Improvements to most audio-enqueuing applications. (If necessary I can
try to extract some of the aplay improvements.)
- New APIs on LibAudio/ClientConnection which allows non-realtime
applications to enqueue audio in big chunks like before.
- Removal of status APIs from the audio server connection for
information that can be directly obtained from the shared queue.
- Split the pause playback API into two APIs with more intuitive names.
I know this is a large commit, and you can kinda tell from the commit
message. It's basically impossible to break this up without hacks, so
please forgive me. These are some of the best changes to the audio
subsystem and I hope that that makes up for this :yaktangle: commit.
:yakring:
With the following change in how we send audio, the old Buffer type is
not really needed anymore. However, moving WavLoader to the new system
is a bit more involved and out of the scope of this PR. Therefore, we
need to keep Buffer around, but to make it clear that it's the old
buffer type which will be removed soon, we rename it to LegacyBuffer.
Most of the users will be gone after the next commit anyways.
`static const` variables can be computed and initialized at run-time
during initialization or the first time a function is called. Change
them to `static constexpr` to ensure they are computed at
compile-time.
This allows some removal of `strlen` because the length of the
`StringView` can be used which is pre-computed at compile-time.
The format of these names is "Full Abbreviation (.fileformat)". For
example: "FLAC (.flac)", "RIFF WAVE (.wav)", "MPEG Layer III (.mp3)",
"Vorbis (.ogg)" The reasoning is that the container and therefore the
file ending may differ significantly from the actual format, and the
format should be given as unambiguously as possible and necessary.
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
This fixes all current code smells, bugs and issues reported by
SonarCloud static analysis. Other issues are almost exclusively false
positives. This makes much code clearer, and some minor benefits in
performance or bug evasion may be gained.
Previously, error_string() returned char* which is bad Serenity style
and caused issues when other error handling methods were tried. As both
WavLoader and (future) FLAC loader store a String internally for the
error message, it makes sense to return a String reference instead.
Prior code in `WavLoader::get_more_samples()` would attempt to
read the requested number of samples without actually checking
whether that many samples were remaining in the stream.
This was the cause of an audible pop at the end of a track, due
to reading non-audio data that is sometimes at the end of a Wave file.
Now we only attempt to read up to the end of sample data, but no
further.
Also, added comments to clarify the meaning of "sample", and how it
should be independent of the number of channels.
This fixes a bug where if you try to play a Wave file a second
time (or loop with `aplay -l`), the second time will be pure
noise.
The function `Audio::Loader::seek` is meant to seek to a specific
audio sample, e.g. seek(0) should go to the first audio sample.
However, WavLoader was interpreting seek(0) as the beginning
of the file or stream, which contains non-audio header data.
This fixes the bug by capturing the byte offset of the start of the
audio data, and offseting the raw file/stream seek by that amount.
LibAudio's WavLoader plugin for loading WAV files now supports loading
audio files with 32-bit float or 64-bit float samples.
By supporting these new non-int sample formats, Audio::Buffer now stores
the sample format (out of a list of supported formats) instead of the
raw bit depth. (The bit depth is easily calculated with
pcm_bits_per_sample)
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
A C++ source file containing just
#include <LibFoo/Bar.h>
should always compile cleanly.
This patch adds missing header inclusions that could have caused weird error
messages if they were used in a different context. Also, this confused QtCreator.