This is not a functional change, the exposed (incorrect) behaviour is
the same as it was before, this simply removes the last user of
NativeProperties, allowing us to remove them completely from LibJS.
It's way too easy to get this wrong: for the IsArray abstract operation,
Value::is_array() needs to be called. Since we have RTTI, the virtual
Object::is_array() method is not needed anymore - if we need to know
whether something is *actually* a JS::Array (we currently check in more
cases than we should, I think) and not a Proxy with an Array target, we
should do that in a way that doesn't look like an abstract operation.
This removes all usages of the non-standard define_property helper
method and replaces all it's usages with the specification required
alternative or with define_direct_property where appropriate.
This is a huge patch, I know. In hindsight this perhaps could've been
done slightly more incremental, but I started and then fixed everything
until it worked, and here we are. I tried splitting of some completely
unrelated changes into separate commits, however. Anyway.
This is a rewrite of most of Object, and by extension large parts of
Array, Proxy, Reflect, String, TypedArray, and some other things.
What we already had worked fine for about 90% of things, but getting the
last 10% right proved to be increasingly difficult with the current code
that sort of grew organically and is only very loosely based on the
spec - this became especially obvious when we started fixing a large
number of test262 failures.
Key changes include:
- 1:1 matching function names and parameters of all object-related
functions, to avoid ambiguity. Previously we had things like put(),
which the spec doesn't have - as a result it wasn't always clear which
need to be used.
- Better separation between object abstract operations and internal
methods - the former are always the same, the latter can be overridden
(and are therefore virtual). The internal methods (i.e. [[Foo]] in the
spec) are now prefixed with 'internal_' for clarity - again, it was
previously not always clear which AO a certain method represents,
get() could've been both Get and [[Get]] (I don't know which one it
was closer to right now).
Note that some of the old names have been kept until all code relying
on them is updated, but they are now simple wrappers around the
closest matching standard abstract operation.
- Simplifications of the storage layer: functions that write values to
storage are now prefixed with 'storage_' to make their purpose clear,
and as they are not part of the spec they should not contain any steps
specified by it. Much functionality is now covered by the layers above
it and was removed (e.g. handling of accessors, attribute checks).
- PropertyAttributes has been greatly simplified, and is being replaced
by PropertyDescriptor - a concept similar to the current
implementation, but more aligned with the actual spec. See the commit
message of the previous commit where it was introduced for details.
- As a bonus, and since I had to look at the spec a whole lot anyway, I
introduced more inline comments with the exact steps from the spec -
this makes it super easy to verify correctness.
- East-const all the things.
As a result of all of this, things are much more correct but a bit
slower now. Retaining speed wasn't a consideration at all, I have done
no profiling of the new code - there might be low hanging fruits, which
we can then harvest separately.
Special thanks to Idan for helping me with this by tracking down bugs,
updating everything outside of LibJS to work with these changes (LibWeb,
Spreadsheet, HackStudio), as well as providing countless patches to fix
regressions I introduced - there still are very few (we got it down to
5), but we also get many new passing test262 tests in return. :^)
Co-authored-by: Idan Horowitz <idan.horowitz@gmail.com>
This was almost entirely up-to-spec already, just missing exception
checks, and we now leave the lexical environment in the modified state
if an exception occurs during statement evaluation.
Specifically, this now explicitly takes the length, adds missing
exceptions checks to calls with user-supplied lengths, takes and uses
the prototype argument, and fixes some spec non-conformance in
ArrayConstructor and its native functions around the use of ArrayCreate
This patch implements spec-compliant runtime semantics for the following
constructs:
- super.property
- super[property]
The MakeSuperPropertyReference AO is added to support this. :^)
ResolveBinding now matches the spec, while the non-conforming parts
are moved to GetIdentifierReference.
Implementing this properly requires variable bindings.
This patch adds an override for NewExpression::execute() in the AST
interpreter to separate the logic from CallExpression. As a result,
both evaluation functions are simplified.
Both expressions are still largely non-conforming, but this makes
it easier to work on improving that since we can now deal with them
separately. :^)
Our Reference class now has the same fields as the spec:
- Base (a non-nullish value, an environment record, or `unresolvable`)
- Referenced Name (the name of the binding)
- Strict (whether the reference originated in strict mode code)
- ThisValue (if non-empty, the reference represents a `super` keyword)
The main difference from before is that we now resolve the environment
record that a reference interacts with. Previously we simply resolved
to either "local variable" or "global variable".
The associated abstract operations are still largely non-conforming,
since we don't yet implement proper variable bindings. But this patch
should at least fix a handful of test262 cases. :^)
There's one minor regression: some TypeError message strings get
a little worse due to doing a RequireObjectCoercible earlier in the
evaluation of MemberExpression.
The parser doesn't always track lexical scopes correctly, so let's not
rely on that for direct argument loading.
This reverts the LoadArguments bytecode instruction as well. We can
bring these things back when the parser can reliably tell us that
a given Identifier is indeed a function argument.
To better follow the spec, we need to distinguish between the current
execution context's lexical environment and variable environment.
This patch moves us to having two record pointers, although both of
them point at the same environment records for now.
This patch adds FunctionEnvironmentRecord as a subclass of the existing
DeclarativeEnvironmentRecord. Things that are specific to function
environment records move into there, simplifying the base.
Most of the abstract operations related to function environment records
are rewritten to match the spec exactly. I also had to implement
GetThisEnvironment() and GetSuperConstructor() to keep tests working
after the changes, so that's nice as well. :^)
This patch makes the following renames:
- get_from_scope() => get_from_environment_record()
- put_to_scope() => put_into_environment_record()
- delete_from_scope() => delete_from_environment_record()
This patch makes the following name changes:
- ScopeObject => EnvironmentRecord
- LexicalEnvironment => DeclarativeEnvironmentRecord
- WithScope => ObjectEnvironmentRecord
This now matches the spec's OrdinaryObjectCreate() across the board:
instead of implicitly setting the created object's prototype to
%Object.prototype% and then in many cases setting it to a nullptr right
away, it now has an 'Object* prototype' parameter with _no default
value_. This makes the code easier to compare with the spec, very clear
in terms of what prototype is being used as well as avoiding unnecessary
shape transitions.
Also fixes a couple of cases were we weren't setting the correct
prototype.
There's no reason to assume that the object would not be empty (as in
having own properties), so let's follow our existing pattern of
Type::create(...) and simply call it 'create'.
Instead of doing a generic scoped variable lookup, function arguments
now go directly to the call frame arguments list.
This is a huge speedup on everything that uses arguments. :^)
This patch adds an "argument index" field to Identifier AST nodes.
If the Identifier refers to a function parameter in the currently
open function scope, we stash the index of the parameter here.
This will allow us to implement much faster direct access to function
argument variables.