This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
C++20 can automatically synthesize `operator!=` from `operator==`, so
there is no point in writing such functions by hand if all they do is
call through to `operator==`.
This fixes a compile error with compilers that implement P2468 (Clang
16 currently). This paper restores the C++17 behavior that if both
`T::operator==(U)` and `T::operator!=(U)` exist, `U == T` won't be
rewritten in reverse to call `T::operator==(U)`. Removing `!=` operators
makes the rewriting possible again.
See https://reviews.llvm.org/D134529#3853062
This isn't a complete conversion to ErrorOr<void>, but a good chunk.
The end goal here is to propagate buffer allocation failures to the
caller, and allow the use of TRY() with formatting functions.
It's very common to encounter single-character strings in JavaScript on
the web. We can make such strings significantly lighter by having a
1-character inline capacity on the Vectors.
Doing so would increase memory consumption by quite a bit, since many
useless copies of the checkpoints hashmap would be created and later
thrown away.
Currently, when we need to repeat an instruction N times, we simply add
that instruction N times in a for-loop. This doesn't scale well with
extremely large values of N, and ECMA-262 allows up to N = 2^53 - 1.
Instead, add a new REPEAT bytecode operation to defer this loop from the
parser to the runtime executor. This allows the parser to complete sans
any loops (for this instruction), and allows the executor to bail early
if the repeated bytecode fails.
Note: The templated ByteCode methods are to allow the Posix parsers to
continue using u32 because they are limited to N = 2^20.
This struct holds a counter for the number of executed operations, and
vectors for matches, captures groups, and named capture groups. Each of
the vectors is unused. Remove the struct and just keep a separate
counter for the executed operations.
Combining these into one list helps reduce the size of MatchState, and
as a result, reduces the amount of memory consumed during execution of
very large regex matches.
Doing this also allows us to remove a few regex byte code instructions:
ClearNamedCaptureGroup, SaveLeftNamedCaptureGroup, and NamedReference.
Named groups now behave the same as unnamed groups for these operations.
Note that SaveRightNamedCaptureGroup still exists to cache the matched
group name.
This also removes the recursion level from the MatchState, as it can
exist as a local variable in Matcher::execute instead.
In non-Unicode mode, the existing MatchState::string_position is tracked
in code units; in Unicode mode, it is tracked in code points.
In order for some RegexStringView operations to be performant, it is
useful for the MatchState to have a field to always track the position
in code units. This will allow RegexStringView methods (e.g. operator[])
to perform lookups based on code unit offsets, rather than needing to
iterate over the entire string to find a code point offset.
The current method of iterating through the string to access a code
point hurts performance quite badly for very large strings. The test262
test "RegExp/property-escapes/generated/Any.js" previously took 3 hours
to complete; this one change brings it down to under 10 seconds.
When the Unicode option is not set, regular expressions should match
based on code units; when it is set, they should match based on code
points. To do so, the regex parser must combine surrogate pairs when
the Unicode option is set. Further, RegexStringView needs to know if
the flag is set in order to return code point vs. code unit based
string lengths and substrings.
This commit makes LibRegex (mostly) capable of operating on any of
the three main string views:
- StringView for raw strings
- Utf8View for utf-8 encoded strings
- Utf32View for raw unicode strings
As a result, regexps with unicode strings should be able to properly
handle utf-8 and not stop in the middle of a code point.
A future commit will update LibJS to use the correct type of string
depending on the flags.
When REGEX_DEBUG is enabled, LibRegex dumps a table of information
regarding the state of the regex bytecode execution. The Compare opcode
manipulates state.string_position directly, so the string_position value
cannot be used to display where the comparison started; therefore, this
patch introduces a new variable to keep track of where we were before
the comparison happened.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.