This changes Web::Bindings::throw_dom_exception_if_needed() to return a
JS::ThrowCompletionOr instead of an Optional. This allows callers to
wrap the invocation with a TRY() macro instead of making a follow-up
call to should_return_empty(). Further, this removes all invocations to
vm.exception() in the generated bindings.
This also required converting URLSearchParams::for_each and the callback
function it invokes to ThrowCompletionOr. With this, the ReturnType enum
used by WrapperGenerator is removed as all callers would be using
ReturnType::Completion.
Both at the same time because many of them call construct() in call()
and I'm not keen on adding a bunch of temporary plumbing to turn
exceptions into throw completions.
Also changes the return value of construct() to Object* instead of Value
as it always needs to return an object; allowing an arbitrary Value is a
massive foot gun.
The old versions were renamed to JS_DECLARE_OLD_NATIVE_FUNCTION and
JS_DEFINE_OLD_NATIVE_FUNCTION, and will be eventually removed once all
native functions were converted to the new format.
Adds support for methods whose last parameter is a variadic DOMString.
We constructor a Vector<String> of the remaining arguments to pass to
the C++ implementation.
Note our Attribute class is what the spec refers to as just "Attr". The
main differences between the existing implementation and the spec are
just that the spec defines more fields.
Attributes can contain namespace URIs and prefixes. However, note that
these are not parsed in HTML documents unless the document content-type
is XML. So for now, these are initialized to null. Web pages are able to
set the namespace via JavaScript (setAttributeNS), so these fields may
be filled in when the corresponding APIs are implemented.
The main change to be aware of is that an attribute is a node. This has
implications on how attributes are stored in the Element class. Nodes
are non-copyable and non-movable because these constructors are deleted
by the EventTarget base class. This means attributes cannot be stored in
a Vector or HashMap as these containers assume copyability / movability.
So for now, the Vector holding attributes is changed to hold RefPtrs to
attributes instead. This might change when attribute storage is
implemented according to the spec (by way of NamedNodeMap).
This adds the ParamatizedType, as `Vector<String>` doesn't encode the
full type information. It is a separate struct as you can't have
`Vector<Type>` inside of `Type`. This also makes Type RefCounted
because I had to make parse_type return a pointer to make dynamic
casting work correctly.
The reason I made it RefCounted instead of using a NonnullOwnPtr is
because it causes compiler errors that I don't want to figure out right
now.
Note there are a couple of type differences between the spec and the IDL
file added in this commit. For example, we will need to support a type
of Variant to handle spec types such as "(double or sequence<double>)".
But for now, this allows web pages to construct an IntersectionObserver
with any valid type.
This concept is not present in ECMAScript, and it bothers me every time
I see it.
It's only used by WrapperGenerator, and even there only relevant in two
places, so let's fully remove it from LibJS and use a simple ternary
expression instead:
cpp_name = js_name.is_null() && legacy_null_to_empty_string
? String::empty()
: js_name.to_string(global_object);
Previously this would generate the following code:
JS::Value foo_value;
if (!foo.is_undefined())
foo_value = foo;
Which is dangerous as we're passing an empty value around, which could
be exposed to user code again. This is fine with "= null", for which it
also generates:
else
foo_value = JS::js_null();
So, in summary: a value of type `any`, not `required`, with no default
value and no initializer from user code will now default to undefined
instead of an empty value.
Having IDL constructors call FooWrapper::create(impl) directly was
creating a wrapper directly without telling the impl object about the
wrapper. This meant that we had wrapped C++ objects with a null
wrapper() pointer.
This introduces 3 classes: NodeList, StaticNodeList and LiveNodeList.
NodeList is the base of the static and live versions. Static is a
snapshot whereas live acts on the underlying data and thus inhibits
the same issues we have currently with HTMLCollection.
They were split into separate classes to not have them weirdly
mis-mashed together.
The create functions for static and live both return a NNRP to the base
class. This is to prevent having to do awkward casting at creation
and/or return, as the bindings expect to see the base NodeList only.
Instead of setting it to the default object prototype and then
immediately setting it again via internal_set_prototype_of, we can just
set it directly in the parent constructor call.
Since we don't support IDL typedefs or unions yet, the responsibility
of verifying the type of the argument is temporarily moved from the
generated Wrapper to the implementation.