This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
Root and intermediate CA certificates should have these extensions set
to indicate that they are allowed to sign other certificates. The values
reported in these extensions is now also checked by `verify_chain` to
make sure no non-CA certificates are used to sign another certificate.
The certificate parser now also aborts when a critical extension is
detected which is unsupported, as is required by the specification.
The wildcard specified in a certificates subject can only match a single
level of subdomains. Originally, this function could match multiple
levels of subdomains with a single "*.".
As an example, https://wrong.host.badssl.com/ should fail to load, as
the certificate provided by the server only specifies "*.badssl.com".
However this was correctly matching anyway. With this change this page
now correctly fails to load.
The `build_rsa_pre_master_secret` function originally called
`verify_chain_and_get_matching_certificate`, which verified the chain
and returned a certificate matching the specified hostname.
Since the first certificate in the chain should always be the one
matching with the hostname, we can simply use that one instead. This
means we can completely remove this method and just use `verify_chain`.
To make sure the hostname is still verified, `verify_chain` now also
checks that the first certificate in the chain matches the specified
hostname. If the hostname is empty, we currently fail the verification,
however this basically never happen, as the server name indication
extension is always used.
With this change the certificate chain sent by the server will actually
be verified, instead of just checking the names of the certificates.
To determine if a certificate is signed by a root certificate, the list
of root certificates is now a HashMap mapping from the unique identifier
string to the certificate. This allows us to take the issuer of a
certificate and easily check if it is a root certificate. If a
certificate is not signed by a root certificate, we will check that it
is signed by the next certificate in the chain.
This also removes the ad-hoc checking of certificate validity from
multiple places, and moves all checking to the verify_chain.
The CA certificates list now contains the actual certificate data for
approximatly a hundred certificate authorities. These certificates were
generated from https://mkcert.org, which uses the Mozilla CA certificate
list.
This also updates the code for reading the CA certificates.
I've attempted to handle the errors gracefully where it was clear how to
do so, and simple, but a lot of this was just adding
`release_value_but_fixme_should_propagate_errors()` in places.
This commit converts TLS::TLSv12 to a Core::Stream object, and in the
process allows TLS to now wrap other Core::Stream::Socket objects.
As a large part of LibHTTP and LibGemini depend on LibTLS's interface,
this also converts those to support Core::Stream, which leads to a
simplification of LibHTTP (as there's no need to care about the
underlying socket type anymore).
Note that RequestServer now controls the TLS socket options, which is a
better place anyway, as RS is the first receiver of the user-requested
options (though this is currently not particularly useful).
Same as Vector, ByteBuffer now also signals allocation failure by
returning an ENOMEM Error instead of a bool, allowing us to use the
TRY() and MUST() patterns.
This adds an `AK::ByteReader` to help with that so we don't duplicate
the logic all over the place.
No more `*(const u16*)` and `*(const u32*)` for anyone.
This should help a little with #7060.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
The user may now request specific cipher suites, the use of SNI, and
whether we should validate certificates (not that we're doing a good job
of that).
This was done with the help of several scripts, I dump them here to
easily find them later:
awk '/#ifdef/ { print "#cmakedefine01 "$2 }' AK/Debug.h.in
for debug_macro in $(awk '/#ifdef/ { print $2 }' AK/Debug.h.in)
do
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec sed -i -E 's/#ifdef '$debug_macro'/#if '$debug_macro'/' {} \;
done
# Remember to remove WRAPPER_GERNERATOR_DEBUG from the list.
awk '/#cmake/ { print "set("$2" ON)" }' AK/Debug.h.in