This implementation closely follows the StringIterator object in that
the abstract closure meant to be created in CreateRegExpStringIterator
is instead unrolled into RegExpStringIterator.prototype.next.
Just like the previous Temporal.{Instant,TimeZone} commits, this patch
adds the Calendar object itself, its constructor and prototype
(currently empty), and two required abstract operations.
All regex flags supported by LibJS currently correspond to a LibRegex
option, but this is not the case for the RegExp.prototype.hasIndices
proposal, which is handled entirely in RegExpBuiltinExec. Remove the
flag mapping to prepare for this. This incurs a bit of an optimization
loss in the flag getters, as we now do a substring search, but we can
revisit the getter implementation if it becomes an issue.
These were an ad-hoc way to implement special behaviour when reading or
writing to specific object properties. Because these were effectively
replaced by the abillity to override the internal methods of Object,
they are no longer needed.
Just like the initial Temporal.TimeZone commit, this patch adds the
Instant object itself, its constructor and prototype (currently empty),
and two required abstract operations.
Here we got our first Temporal object :^)
This patch adds the TimeZone object itself, its constructor and
prototype (currently empty), and a bunch of required abstract operations
Add a JS_ENUMERATE_TEMPORAL_OBJECTS macro and use it to generate:
- Forward declarations
- CommonPropertyNames class name members
- Constructor and prototype GlobalObject members, getters, visitors,
and initialize_constructor() calls
This also renames ErrorType::StringMatchAllNonGlobalRegExp to
ErrorType::StringNonGlobalRegExp (removes "MatchAll") because this error
is now used in the same way from multiple operations.
This is a huge patch, I know. In hindsight this perhaps could've been
done slightly more incremental, but I started and then fixed everything
until it worked, and here we are. I tried splitting of some completely
unrelated changes into separate commits, however. Anyway.
This is a rewrite of most of Object, and by extension large parts of
Array, Proxy, Reflect, String, TypedArray, and some other things.
What we already had worked fine for about 90% of things, but getting the
last 10% right proved to be increasingly difficult with the current code
that sort of grew organically and is only very loosely based on the
spec - this became especially obvious when we started fixing a large
number of test262 failures.
Key changes include:
- 1:1 matching function names and parameters of all object-related
functions, to avoid ambiguity. Previously we had things like put(),
which the spec doesn't have - as a result it wasn't always clear which
need to be used.
- Better separation between object abstract operations and internal
methods - the former are always the same, the latter can be overridden
(and are therefore virtual). The internal methods (i.e. [[Foo]] in the
spec) are now prefixed with 'internal_' for clarity - again, it was
previously not always clear which AO a certain method represents,
get() could've been both Get and [[Get]] (I don't know which one it
was closer to right now).
Note that some of the old names have been kept until all code relying
on them is updated, but they are now simple wrappers around the
closest matching standard abstract operation.
- Simplifications of the storage layer: functions that write values to
storage are now prefixed with 'storage_' to make their purpose clear,
and as they are not part of the spec they should not contain any steps
specified by it. Much functionality is now covered by the layers above
it and was removed (e.g. handling of accessors, attribute checks).
- PropertyAttributes has been greatly simplified, and is being replaced
by PropertyDescriptor - a concept similar to the current
implementation, but more aligned with the actual spec. See the commit
message of the previous commit where it was introduced for details.
- As a bonus, and since I had to look at the spec a whole lot anyway, I
introduced more inline comments with the exact steps from the spec -
this makes it super easy to verify correctness.
- East-const all the things.
As a result of all of this, things are much more correct but a bit
slower now. Retaining speed wasn't a consideration at all, I have done
no profiling of the new code - there might be low hanging fruits, which
we can then harvest separately.
Special thanks to Idan for helping me with this by tracking down bugs,
updating everything outside of LibJS to work with these changes (LibWeb,
Spreadsheet, HackStudio), as well as providing countless patches to fix
regressions I introduced - there still are very few (we got it down to
5), but we also get many new passing test262 tests in return. :^)
Co-authored-by: Idan Horowitz <idan.horowitz@gmail.com>
This is an implementation of 'The Property Descriptor Specification
Type' and related abstract operations, namely:
- IsAccessorDescriptor
- IsDataDescriptor
- IsGenericDescriptor
- FromPropertyDescriptor
- ToPropertyDescriptor
- CompletePropertyDescriptor
It works with Optional<T> to enable omitting certain fields, which will
eventually replace the Attribute::Has{Getter,Setter,Configurable,
Enumerable,Writable} bit flags, which are awkward to work with - being
able to use an initializer list with any of the possible attributes is
much more convenient.
Parts of the current PropertyAttributes implementation as well as the
much simpler PropertyDescriptor struct in Object.h will eventually be
replaced with this and completely go away.
Property storage will still use the PropertyAttributes bit flags, this
is for the layers above.
Note that this is currently guarded behind an #if 0 as if conflicts with
the existing PropertyDescriptor struct, but it's known to compile and
work just fine - I simply want to have this in a separate commit, the
primary object rewrite commit will be large enough as is.
These represent the outermost scope in the environment record
hierarchy. The spec says they should be a "composite" of two things:
- An ObjectEnvironmentRecord wrapping the global object
- A DeclarativeEnvironmentRecord for other declarations
It's not yet clear to me how this should work, so this patch only
implements the first part, an object record wrapping the global object.
This patch adds FunctionEnvironmentRecord as a subclass of the existing
DeclarativeEnvironmentRecord. Things that are specific to function
environment records move into there, simplifying the base.
Most of the abstract operations related to function environment records
are rewritten to match the spec exactly. I also had to implement
GetThisEnvironment() and GetSuperConstructor() to keep tests working
after the changes, so that's nice as well. :^)
This patch makes the following name changes:
- ScopeObject => EnvironmentRecord
- LexicalEnvironment => DeclarativeEnvironmentRecord
- WithScope => ObjectEnvironmentRecord
While this implementation should be complete it is based on HashMap's
iterator, which currently follows bucket-order instead of the required
insertion order. This can be simply fixed by replacing the underlying
HashMap member in Map with an enhanced one that maintains a linked
list in insertion order.
The fact that they *are* subclasses is an implementation detail and
should not be highlighted. The spec calls these NativeErrors, so let's
use that.
Also added a comment explaining *why* they inherit from Error - I was
about to change that :^)
This replaces Bytecode::Op::EnterScope with a new NewFunction op that
instantiates a ScriptFunction from a given FunctionNode (AST).
This is then used to instantiate the local functions directly from
bytecode when entering a ScopeNode. :^)
We already have two separate implementations of this, so let's do it
properly. The optional value type check is done by a callback function
that returns Result<void, ErrorType> - value type accepted or message
for TypeError, that is.
Instead of using Strings in the bytecode ops this adds a global string
table to the Executable struct which individual operations can refer
to using indices. This brings bytecode ops one step closer to being
pointer free.
While this implementation should be complete it is based on HashTable's
iterator, which currently follows bucket-order instead of the required
insertion order. This can be simply fixed by replacing the underlying
HashTable member in Set with an enhanced one that maintains a linked
list in insertion order.
This limits the size of each block (currently set to 1K), and gets us
closer to a canonical, more easily analysable bytecode format.
As a result of this, "Labels" are now simply entries to basic blocks.
Since there is no more 'conditional' jump (as all jumps are always
taken), JumpIf{True,False} are unified to JumpConditional, and
JumpIfNullish is renamed to JumpNullish.
Also fixes#7914 as a result of reimplementing the loop logic.
This change removes the mmap inside of Block in favor of a growing
vector of bytes. This is favorable for two reasons:
- We don't take more space than we need
- There is no limit to the growth of the vector (previously, if
the Block overstepped its 64kb boundary, it would just crash)
However, if that vector happens to resize, any pointer pointing into
that vector would become invalid. To avoid this, this commit adds an
InstructionHandle<Op> class which just stores a block and an offset
into that block.
This patch begins the work of implementing JavaScript execution in a
bytecode VM instead of an AST tree-walk interpreter.
It's probably quite naive, but we have to start somewhere.
The basic idea is that you call Bytecode::Generator::generate() on an
AST node and it hands you back a Bytecode::Block filled with
instructions that can then be interpreted by a Bytecode::Interpreter.
This first version only implements two instructions: Load and Add. :^)
Each bytecode block has infinity registers, and the interpreter resizes
its register file to fit the block being executed.
Two new `js` options are added in this patch as well:
`-d` will dump the generated bytecode
`-b` will execute the generated bytecode
Note that unless `-d` and/or `-b` are specified, none of the bytecode
related stuff in LibJS runs at all. This is implemented in parallel
with the existing AST interpreter. :^)
Instead of being its own separate unrelated class.
This automatically makes typed array properties available to it,
as well as making it available to the runtime.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Almost a year after first working on this, it's finally done: an
implementation of Promises for LibJS! :^)
The core functionality is working and closely following the spec [1].
I mostly took the pseudo code and transformed it into C++ - if you read
and understand it, you will know how the spec implements Promises; and
if you read the spec first, the code will look very familiar.
Implemented functions are:
- Promise() constructor
- Promise.prototype.then()
- Promise.prototype.catch()
- Promise.prototype.finally()
- Promise.resolve()
- Promise.reject()
For the tests I added a new function to test-js's global object,
runQueuedPromiseJobs(), which calls vm.run_queued_promise_jobs().
By design, queued jobs normally only run after the script was fully
executed, making it improssible to test handlers in individual test()
calls by default [2].
Subsequent commits include integrations into LibWeb and js(1) -
pretty-printing, running queued promise jobs when necessary.
This has an unusual amount of dbgln() statements, all hidden behind the
PROMISE_DEBUG flag - I'm leaving them in for now as they've been very
useful while debugging this, things can get quite complex with so many
asynchronously executed functions.
I've not extensively explored use of these APIs for promise-based
functionality in LibWeb (fetch(), Notification.requestPermission()
etc.), but we'll get there in due time.
[1]: https://tc39.es/ecma262/#sec-promise-objects
[2]: https://tc39.es/ecma262/#sec-jobs-and-job-queues