|
@@ -870,23 +870,35 @@ ThrowCompletionOr<PropertyKey> Value::to_property_key(VM& vm) const
|
|
|
return MUST(key.to_string(vm));
|
|
|
}
|
|
|
|
|
|
+// 7.1.6 ToInt32 ( argument ), https://tc39.es/ecma262/#sec-toint32
|
|
|
ThrowCompletionOr<i32> Value::to_i32_slow_case(VM& vm) const
|
|
|
{
|
|
|
VERIFY(!is_int32());
|
|
|
- double value = TRY(to_number(vm)).as_double();
|
|
|
- if (!isfinite(value) || value == 0)
|
|
|
+
|
|
|
+ // 1. Let number be ? ToNumber(argument).
|
|
|
+ double number = TRY(to_number(vm)).as_double();
|
|
|
+
|
|
|
+ // 2. If number is not finite or number is either +0𝔽 or -0𝔽, return +0𝔽.
|
|
|
+ if (!isfinite(number) || number == 0)
|
|
|
return 0;
|
|
|
- auto abs = fabs(value);
|
|
|
+
|
|
|
+ // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(ℝ(number))).
|
|
|
+ auto abs = fabs(number);
|
|
|
auto int_val = floor(abs);
|
|
|
- if (signbit(value))
|
|
|
+ if (signbit(number))
|
|
|
int_val = -int_val;
|
|
|
+
|
|
|
+ // 4. Let int32bit be int modulo 2^32.
|
|
|
auto remainder = fmod(int_val, 4294967296.0);
|
|
|
auto int32bit = remainder >= 0.0 ? remainder : remainder + 4294967296.0; // The notation “x modulo y” computes a value k of the same sign as y
|
|
|
+
|
|
|
+ // 5. If int32bit ≥ 2^31, return 𝔽(int32bit - 2^32); otherwise return 𝔽(int32bit).
|
|
|
if (int32bit >= 2147483648.0)
|
|
|
int32bit -= 4294967296.0;
|
|
|
return static_cast<i32>(int32bit);
|
|
|
}
|
|
|
|
|
|
+// 7.1.6 ToInt32 ( argument ), https://tc39.es/ecma262/#sec-toint32
|
|
|
ThrowCompletionOr<i32> Value::to_i32(VM& vm) const
|
|
|
{
|
|
|
if (is_int32())
|