AK: Remove unused floating point conversion code

Currently I don't expect this code to be ever used in Ladybird.
This commit is contained in:
Jelle Raaijmakers 2024-10-08 16:47:32 +02:00 committed by Andreas Kling
parent 69f11fc1c6
commit f88acedc8f
Notes: github-actions[bot] 2024-10-08 17:04:49 +00:00
4 changed files with 0 additions and 274 deletions

View file

@ -6,8 +6,6 @@
#pragma once
#include <AK/BitCast.h>
#include <AK/StdLibExtras.h>
#include <AK/Types.h>
namespace AK {
@ -125,193 +123,8 @@ union FloatExtractor<f32> {
};
static_assert(AssertSize<FloatExtractor<f32>, sizeof(f32)>());
template<size_t S, size_t E, size_t M>
requires(S <= 1 && E >= 1 && M >= 1 && (S + E + M) <= 64) class FloatingPointBits final {
public:
static size_t const signbit = S;
static size_t const exponentbits = E;
static size_t const mantissabits = M;
template<typename T>
requires(IsIntegral<T> && IsUnsigned<T> && sizeof(T) <= 8) constexpr FloatingPointBits(T bits)
: m_bits(bits)
{
}
constexpr FloatingPointBits(double value)
: m_bits(bit_cast<u64>(value))
{
}
constexpr FloatingPointBits(float value)
: m_bits(bit_cast<u32>(value))
{
}
double as_double() const
requires(S == 1 && E == 11 && M == 52)
{
return bit_cast<double>(m_bits);
}
float as_float() const
requires(S == 1 && E == 8 && M == 23)
{
return bit_cast<float>(static_cast<u32>(m_bits));
}
u64 bits() const { return m_bits; }
private:
u64 m_bits;
};
typedef FloatingPointBits<1, 8, 23> SingleFloatingPointBits;
typedef FloatingPointBits<1, 11, 52> DoubleFloatingPointBits;
/**
* Convert between two IEEE 754 floating point types in any arrangement of sign, exponent and mantissa bits.
*/
template<typename To, typename From>
constexpr To float_to_float(From const input)
{
constexpr u64 from_exponent_nonnumber = (1ull << From::exponentbits) - 1;
constexpr u64 from_exponent_bias = (1ull << (From::exponentbits - 1)) - 1;
constexpr u64 to_exponent_nonnumber = (1ull << To::exponentbits) - 1;
constexpr u64 to_exponent_bias = (1ull << (To::exponentbits - 1)) - 1;
constexpr u64 to_exponent_max = (1ull << To::exponentbits) - 2;
// Deconstruct input bits to float components
u64 from_sign = (input.bits() >> (From::exponentbits + From::mantissabits)) & From::signbit;
u64 from_exponent = (input.bits() >> From::mantissabits) & ((1ull << From::exponentbits) - 1);
u64 from_mantissa = input.bits() & ((1ull << From::mantissabits) - 1);
u64 to_sign = from_sign & To::signbit;
u64 to_exponent;
u64 to_mantissa;
auto target_value = [&to_sign, &to_exponent, &to_mantissa]() {
return To((to_sign << (To::exponentbits + To::mantissabits)) | (to_exponent << To::mantissabits) | to_mantissa);
};
auto shift_mantissa = [](u64 mantissa) -> u64 {
if constexpr (From::mantissabits < To::mantissabits)
return mantissa << (To::mantissabits - From::mantissabits);
else
return mantissa >> (From::mantissabits - To::mantissabits);
};
// If target is unsigned and source is negative, clamp to 0 or keep NaN
if constexpr (To::signbit == 0) {
if (from_sign == 1) {
if (from_exponent == from_exponent_nonnumber && from_mantissa > 0) {
to_exponent = to_exponent_nonnumber;
to_mantissa = 1;
} else {
to_exponent = 0;
to_mantissa = 0;
}
return target_value();
}
}
// If the source floating point is denormalized;
if (from_exponent == 0) {
// If the source mantissa is 0, the value is +/-0
if (from_mantissa == 0) {
to_exponent = 0;
to_mantissa = 0;
return target_value();
}
// If the source has more exponent bits than the target, then the largest possible
// source mantissa still cannot be represented in the target denormalized value.
if constexpr (From::exponentbits > To::exponentbits) {
to_exponent = 0;
to_mantissa = 0;
return target_value();
}
// If the source and target have the same number of exponent bits, we only need to
// shift the mantissa.
if constexpr (From::exponentbits == To::exponentbits) {
to_exponent = 0;
to_mantissa = shift_mantissa(from_mantissa);
return target_value();
}
// The target has more exponent bits, so our denormalized value can be represented
// as a normalized value in the target floating point. Normalized values have an
// implicit leading 1, so we shift the mantissa left until we find our explicit
// leading 1 which is then dropped.
int adjust_exponent = -1;
to_mantissa = from_mantissa;
do {
++adjust_exponent;
to_mantissa <<= 1;
} while ((to_mantissa & (1ull << From::mantissabits)) == 0);
to_exponent = to_exponent_bias - from_exponent_bias - adjust_exponent;
// Drop the most significant bit from the mantissa
to_mantissa &= (1ull << From::mantissabits) - 1;
to_mantissa = shift_mantissa(to_mantissa);
return target_value();
}
// If the source is NaN or +/-Inf, keep it that way
if (from_exponent == from_exponent_nonnumber) {
to_exponent = to_exponent_nonnumber;
to_mantissa = (from_mantissa == 0) ? 0 : 1;
return target_value();
}
// Determine the target exponent
to_exponent = to_exponent_bias - from_exponent_bias + from_exponent;
// If the calculated exponent exceeds the target's capacity, clamp both the exponent and the
// mantissa to their maximum values.
if (to_exponent > to_exponent_max) {
to_exponent = to_exponent_max;
to_mantissa = (1ull << To::mantissabits) - 1;
return target_value();
}
// If the new exponent is less than 1, we can only represent this value as a denormalized number
if (to_exponent < 1) {
to_exponent = 0;
// Add a leading 1 and shift the mantissa right
int adjust_exponent = 1 - to_exponent_bias - from_exponent + from_exponent_bias;
to_mantissa = ((1ull << From::mantissabits) | from_mantissa) >> adjust_exponent;
to_mantissa = shift_mantissa(to_mantissa);
return target_value();
}
// New exponent fits; shift the mantissa to fit as well
to_mantissa = shift_mantissa(from_mantissa);
return target_value();
}
template<typename O>
constexpr O convert_from_native_double(double input) { return float_to_float<O>(DoubleFloatingPointBits(input)); }
template<typename O>
constexpr O convert_from_native_float(float input) { return float_to_float<O>(SingleFloatingPointBits(input)); }
template<typename I>
constexpr double convert_to_native_double(I input) { return float_to_float<DoubleFloatingPointBits>(input).as_double(); }
template<typename I>
constexpr float convert_to_native_float(I input) { return float_to_float<SingleFloatingPointBits>(input).as_float(); }
}
#if USING_AK_GLOBALLY
using AK::DoubleFloatingPointBits;
using AK::FloatExtractor;
using AK::FloatingPointBits;
using AK::SingleFloatingPointBits;
using AK::convert_from_native_double;
using AK::convert_from_native_float;
using AK::convert_to_native_double;
using AK::convert_to_native_float;
using AK::float_to_float;
#endif

View file

@ -28,7 +28,6 @@ tests = [
"TestFind",
"TestFixedArray",
"TestFixedPoint",
"TestFloatingPoint",
"TestFloatingPointParsing",
"TestFlyString",
"TestFormat",

View file

@ -26,7 +26,6 @@ set(AK_TEST_SOURCES
TestFind.cpp
TestFixedArray.cpp
TestFixedPoint.cpp
TestFloatingPoint.cpp
TestFloatingPointParsing.cpp
TestFlyString.cpp
TestFormat.cpp

View file

@ -1,85 +0,0 @@
/*
* Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/FloatingPoint.h>
#include <LibTest/TestCase.h>
#include <math.h>
TEST_CASE(f16_1_5_10_to_native_float)
{
auto within_approximate = [](u16 lhs, float rhs) -> bool {
auto f32_lhs = convert_to_native_float(FloatingPointBits<1, 5, 10>(lhs));
return fabsf(f32_lhs - rhs) <= 0.00001f;
};
EXPECT(within_approximate(0x0000, 0.f));
EXPECT(within_approximate(0x03FF, 0.000061f));
EXPECT(within_approximate(0x3CEF, 1.23339f));
EXPECT(within_approximate(0xBC00, -1.f));
EXPECT(within_approximate(0xA266, -0.0125f));
float result;
result = convert_to_native_float(FloatingPointBits<1, 5, 10>(0xFC01u));
EXPECT(isnan(result));
result = convert_to_native_float(FloatingPointBits<1, 5, 10>(0x7C00u));
EXPECT(isinf(result));
}
TEST_CASE(float_to_double_roundtrips)
{
auto roundtrip = [](float floatvalue1) {
auto doublevalue = convert_from_native_float<DoubleFloatingPointBits>(floatvalue1).as_double();
auto floatbits = convert_from_native_double<SingleFloatingPointBits>(doublevalue);
auto floatvalue2 = convert_to_native_float(floatbits);
EXPECT_APPROXIMATE(floatvalue1, floatvalue2);
};
roundtrip(-1.0f);
roundtrip(-0.1f);
roundtrip(0.0f);
roundtrip(0.000001f);
roundtrip(0.1f);
roundtrip(1.0f);
roundtrip(3.141592f);
roundtrip(16777216.0f);
roundtrip(33554432.0f);
roundtrip(1 / 0.0f);
roundtrip(1 / -0.0f);
roundtrip(0 / 0.0f);
}
TEST_CASE(normalize_denormalize)
{
// Go from denormalized float to normalized double
auto denormalized_float = 6.709679e-39f;
auto denormalized_float_bits = SingleFloatingPointBits(denormalized_float);
auto normalized_double = convert_to_native_double(denormalized_float_bits);
EXPECT_APPROXIMATE(denormalized_float, normalized_double);
// Go back from normalized double to denormalized float
auto normalized_double_bits = DoubleFloatingPointBits(normalized_double);
auto reconstructed_denormalized_float = convert_to_native_float(normalized_double_bits);
EXPECT_APPROXIMATE(denormalized_float, reconstructed_denormalized_float);
}
TEST_CASE(large_exponent)
{
// Make sure we support at least 62 bits of exponent
auto large_exponent_float = convert_from_native_double<FloatingPointBits<1, 62, 1>>(1.0);
auto converted_double = convert_to_native_double(large_exponent_float);
EXPECT_APPROXIMATE(converted_double, 1.0);
}
TEST_CASE(large_mantissa)
{
// Make sure we support at least 62 bits of mantissa
auto large_exponent_float = convert_from_native_double<FloatingPointBits<1, 1, 62>>(1.0);
auto converted_double = convert_to_native_double(large_exponent_float);
EXPECT_APPROXIMATE(converted_double, 1.0);
}