|
@@ -0,0 +1,551 @@
|
|
|
+/*
|
|
|
+ * Copyright (c) 2021, Idan Horowitz <idan.horowitz@gmail.com>
|
|
|
+ * All rights reserved.
|
|
|
+ *
|
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
|
+ * modification, are permitted provided that the following conditions are met:
|
|
|
+ *
|
|
|
+ * 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
+ * list of conditions and the following disclaimer.
|
|
|
+ *
|
|
|
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
+ * this list of conditions and the following disclaimer in the documentation
|
|
|
+ * and/or other materials provided with the distribution.
|
|
|
+ *
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
|
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
+ */
|
|
|
+
|
|
|
+#pragma once
|
|
|
+
|
|
|
+#include <AK/Concepts.h>
|
|
|
+
|
|
|
+namespace AK {
|
|
|
+
|
|
|
+template<Integral K>
|
|
|
+class BaseRedBlackTree {
|
|
|
+public:
|
|
|
+ [[nodiscard]] size_t size() const { return m_size; }
|
|
|
+ [[nodiscard]] bool is_empty() const { return m_size == 0; }
|
|
|
+
|
|
|
+ enum class Color : bool {
|
|
|
+ Red,
|
|
|
+ Black
|
|
|
+ };
|
|
|
+ struct Node {
|
|
|
+ Node* left_child { nullptr };
|
|
|
+ Node* right_child { nullptr };
|
|
|
+ Node* parent { nullptr };
|
|
|
+
|
|
|
+ Color color { Color::Red };
|
|
|
+
|
|
|
+ K key;
|
|
|
+
|
|
|
+ Node(K key)
|
|
|
+ : key(key)
|
|
|
+ {
|
|
|
+ }
|
|
|
+ virtual ~Node() {};
|
|
|
+ };
|
|
|
+
|
|
|
+protected:
|
|
|
+ BaseRedBlackTree() = default; // These are protected to ensure no one instantiates the leaky base red black tree directly
|
|
|
+ virtual ~BaseRedBlackTree() {};
|
|
|
+
|
|
|
+ void rotate_left(Node* subtree_root)
|
|
|
+ {
|
|
|
+ VERIFY(subtree_root);
|
|
|
+ auto* pivot = subtree_root->right_child;
|
|
|
+ VERIFY(pivot);
|
|
|
+ auto* parent = subtree_root->parent;
|
|
|
+
|
|
|
+ // stage 1 - subtree_root's right child is now pivot's left child
|
|
|
+ subtree_root->right_child = pivot->left_child;
|
|
|
+ if (subtree_root->right_child)
|
|
|
+ subtree_root->right_child->parent = subtree_root;
|
|
|
+
|
|
|
+ // stage 2 - pivot's left child is now subtree_root
|
|
|
+ pivot->left_child = subtree_root;
|
|
|
+ subtree_root->parent = pivot;
|
|
|
+
|
|
|
+ // stage 3 - update pivot's parent
|
|
|
+ pivot->parent = parent;
|
|
|
+ if (!parent) { // new root
|
|
|
+ m_root = pivot;
|
|
|
+ } else if (parent->left_child == subtree_root) { // we are the left child
|
|
|
+ parent->left_child = pivot;
|
|
|
+ } else { // we are the right child
|
|
|
+ parent->right_child = pivot;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ void rotate_right(Node* subtree_root)
|
|
|
+ {
|
|
|
+ VERIFY(subtree_root);
|
|
|
+ auto* pivot = subtree_root->left_child;
|
|
|
+ VERIFY(pivot);
|
|
|
+ auto* parent = subtree_root->parent;
|
|
|
+
|
|
|
+ // stage 1 - subtree_root's left child is now pivot's right child
|
|
|
+ subtree_root->left_child = pivot->right_child;
|
|
|
+ if (subtree_root->left_child)
|
|
|
+ subtree_root->left_child->parent = subtree_root;
|
|
|
+
|
|
|
+ // stage 2 - pivot's right child is now subtree_root
|
|
|
+ pivot->right_child = subtree_root;
|
|
|
+ subtree_root->parent = pivot;
|
|
|
+
|
|
|
+ // stage 3 - update pivot's parent
|
|
|
+ pivot->parent = parent;
|
|
|
+ if (!parent) { // new root
|
|
|
+ m_root = pivot;
|
|
|
+ } else if (parent->left_child == subtree_root) { // we are the left child
|
|
|
+ parent->left_child = pivot;
|
|
|
+ } else { // we are the right child
|
|
|
+ parent->right_child = pivot;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static Node* find(Node* node, K key)
|
|
|
+ {
|
|
|
+ while (node && node->key != key) {
|
|
|
+ if (key < node->key) {
|
|
|
+ node = node->left_child;
|
|
|
+ } else {
|
|
|
+ node = node->right_child;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return node;
|
|
|
+ }
|
|
|
+
|
|
|
+ static Node* find_largest_not_above(Node* node, K key)
|
|
|
+ {
|
|
|
+ Node* candidate = nullptr;
|
|
|
+ while (node) {
|
|
|
+ if (key == node->key) {
|
|
|
+ return node;
|
|
|
+ } else if (key < node->key) {
|
|
|
+ node = node->left_child;
|
|
|
+ } else {
|
|
|
+ candidate = node;
|
|
|
+ node = node->right_child;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return candidate;
|
|
|
+ }
|
|
|
+
|
|
|
+ void insert(Node* node)
|
|
|
+ {
|
|
|
+ VERIFY(node);
|
|
|
+ Node* parent = nullptr;
|
|
|
+ Node* temp = m_root;
|
|
|
+ while (temp) {
|
|
|
+ parent = temp;
|
|
|
+ if (node->key < temp->key) {
|
|
|
+ temp = temp->left_child;
|
|
|
+ } else {
|
|
|
+ temp = temp->right_child;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (!parent) { // new root
|
|
|
+ node->color = Color::Black;
|
|
|
+ m_root = node;
|
|
|
+ m_size = 1;
|
|
|
+ m_minimum = node;
|
|
|
+ return;
|
|
|
+ } else if (node->key < parent->key) { // we are the left child
|
|
|
+ parent->left_child = node;
|
|
|
+ } else { // we are the right child
|
|
|
+ parent->right_child = node;
|
|
|
+ }
|
|
|
+ node->parent = parent;
|
|
|
+
|
|
|
+ if (node->parent->parent) // no fixups to be done for a height <= 2 tree
|
|
|
+ insert_fixups(node);
|
|
|
+
|
|
|
+ m_size++;
|
|
|
+ if (m_minimum->left_child == node)
|
|
|
+ m_minimum = node;
|
|
|
+ }
|
|
|
+
|
|
|
+ void insert_fixups(Node* node)
|
|
|
+ {
|
|
|
+ VERIFY(node && node->color == Color::Red);
|
|
|
+ while (node->parent && node->parent->color == Color::Red) {
|
|
|
+ auto* grand_parent = node->parent->parent;
|
|
|
+ if (grand_parent->right_child == node->parent) {
|
|
|
+ auto* uncle = grand_parent->left_child;
|
|
|
+ if (uncle && uncle->color == Color::Red) {
|
|
|
+ node->parent->color = Color::Black;
|
|
|
+ uncle->color = Color::Black;
|
|
|
+ grand_parent->color = Color::Red;
|
|
|
+ node = grand_parent;
|
|
|
+ } else {
|
|
|
+ if (node->parent->left_child == node) {
|
|
|
+ node = node->parent;
|
|
|
+ rotate_right(node);
|
|
|
+ }
|
|
|
+ node->parent->color = Color::Black;
|
|
|
+ grand_parent->color = Color::Red;
|
|
|
+ rotate_left(grand_parent);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ auto* uncle = grand_parent->right_child;
|
|
|
+ if (uncle && uncle->color == Color::Red) {
|
|
|
+ node->parent->color = Color::Black;
|
|
|
+ uncle->color = Color::Black;
|
|
|
+ grand_parent->color = Color::Red;
|
|
|
+ node = grand_parent;
|
|
|
+ } else {
|
|
|
+ if (node->parent->right_child == node) {
|
|
|
+ node = node->parent;
|
|
|
+ rotate_left(node);
|
|
|
+ }
|
|
|
+ node->parent->color = Color::Black;
|
|
|
+ grand_parent->color = Color::Red;
|
|
|
+ rotate_right(grand_parent);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ m_root->color = Color::Black; // the root should always be black
|
|
|
+ }
|
|
|
+
|
|
|
+ void remove(Node* node)
|
|
|
+ {
|
|
|
+ VERIFY(node);
|
|
|
+
|
|
|
+ // special case: deleting the only node
|
|
|
+ if (m_size == 1) {
|
|
|
+ m_root = nullptr;
|
|
|
+ m_size = 0;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (m_minimum == node)
|
|
|
+ m_minimum = successor(node);
|
|
|
+
|
|
|
+ // removal assumes the node has 0 or 1 child, so if we have 2, relink with the successor first (by definition the successor has no left child)
|
|
|
+ // FIXME: since we dont know how a value is represented in the node, we cant simply swap the values and keys, and instead we relink the nodes
|
|
|
+ // in place, this is quite a bit more expensive, as well as much less readable, is there a better way?
|
|
|
+ if (node->left_child && node->right_child) {
|
|
|
+ auto* successor_node = successor(node); // this is always non-null as all nodes besides the maximum node have a successor, and the maximum node has no right child
|
|
|
+ auto neighbour_swap = successor_node->parent == node;
|
|
|
+ node->left_child->parent = successor_node;
|
|
|
+ if (!neighbour_swap)
|
|
|
+ node->right_child->parent = successor_node;
|
|
|
+ if (node->parent) {
|
|
|
+ if (node->parent->left_child == node) {
|
|
|
+ node->parent->left_child = successor_node;
|
|
|
+ } else {
|
|
|
+ node->parent->right_child = successor_node;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ m_root = successor_node;
|
|
|
+ }
|
|
|
+ if (successor_node->right_child)
|
|
|
+ successor_node->right_child->parent = node;
|
|
|
+ if (neighbour_swap) {
|
|
|
+ successor_node->parent = node->parent;
|
|
|
+ node->parent = successor_node;
|
|
|
+ } else {
|
|
|
+ if (successor_node->parent) {
|
|
|
+ if (successor_node->parent->left_child == successor_node) {
|
|
|
+ successor_node->parent->left_child = node;
|
|
|
+ } else {
|
|
|
+ successor_node->parent->right_child = node;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ m_root = node;
|
|
|
+ }
|
|
|
+ swap(node->parent, successor_node->parent);
|
|
|
+ }
|
|
|
+ swap(node->left_child, successor_node->left_child);
|
|
|
+ if (neighbour_swap) {
|
|
|
+ node->right_child = successor_node->right_child;
|
|
|
+ successor_node->right_child = node;
|
|
|
+ } else {
|
|
|
+ swap(node->right_child, successor_node->right_child);
|
|
|
+ }
|
|
|
+ swap(node->color, successor_node->color);
|
|
|
+ }
|
|
|
+
|
|
|
+ auto* child = node->left_child ?: node->right_child;
|
|
|
+
|
|
|
+ if (child)
|
|
|
+ child->parent = node->parent;
|
|
|
+ if (node->parent) {
|
|
|
+ if (node->parent->left_child == node)
|
|
|
+ node->parent->left_child = child;
|
|
|
+ else
|
|
|
+ node->parent->right_child = child;
|
|
|
+ } else {
|
|
|
+ m_root = child;
|
|
|
+ }
|
|
|
+
|
|
|
+ // if the node is red then child must be black, and just replacing the node with its child should result in a valid tree (no change to black height)
|
|
|
+ if (node->color != Color::Red)
|
|
|
+ remove_fixups(child, node->parent);
|
|
|
+
|
|
|
+ m_size--;
|
|
|
+ }
|
|
|
+
|
|
|
+ // We maintain parent as a separate argument since node might be null
|
|
|
+ void remove_fixups(Node* node, Node* parent)
|
|
|
+ {
|
|
|
+ while (node != m_root && (!node || node->color == Color::Black)) {
|
|
|
+ if (parent->left_child == node) {
|
|
|
+ auto* sibling = parent->right_child;
|
|
|
+ if (sibling->color == Color::Red) {
|
|
|
+ sibling->color = Color::Black;
|
|
|
+ parent->color = Color::Red;
|
|
|
+ rotate_left(parent);
|
|
|
+ sibling = parent->right_child;
|
|
|
+ }
|
|
|
+ if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
|
|
|
+ sibling->color = Color::Red;
|
|
|
+ node = parent;
|
|
|
+ } else {
|
|
|
+ if (!sibling->right_child || sibling->right_child->color == Color::Black) {
|
|
|
+ sibling->left_child->color = Color::Black; // null check?
|
|
|
+ sibling->color = Color::Red;
|
|
|
+ rotate_right(sibling);
|
|
|
+ sibling = parent->right_child;
|
|
|
+ }
|
|
|
+ sibling->color = parent->color;
|
|
|
+ parent->color = Color::Black;
|
|
|
+ sibling->right_child->color = Color::Black; // null check?
|
|
|
+ rotate_left(parent);
|
|
|
+ node = m_root; // fixed
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ auto* sibling = parent->left_child;
|
|
|
+ if (sibling->color == Color::Red) {
|
|
|
+ sibling->color = Color::Black;
|
|
|
+ parent->color = Color::Red;
|
|
|
+ rotate_right(parent);
|
|
|
+ sibling = parent->left_child;
|
|
|
+ }
|
|
|
+ if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
|
|
|
+ sibling->color = Color::Red;
|
|
|
+ node = parent;
|
|
|
+ } else {
|
|
|
+ if (!sibling->left_child || sibling->left_child->color == Color::Black) {
|
|
|
+ sibling->right_child->color = Color::Black; // null check?
|
|
|
+ sibling->color = Color::Red;
|
|
|
+ rotate_left(sibling);
|
|
|
+ sibling = parent->left_child;
|
|
|
+ }
|
|
|
+ sibling->color = parent->color;
|
|
|
+ parent->color = Color::Black;
|
|
|
+ sibling->left_child->color = Color::Black; // null check?
|
|
|
+ rotate_right(parent);
|
|
|
+ node = m_root; // fixed
|
|
|
+ }
|
|
|
+ }
|
|
|
+ parent = node->parent;
|
|
|
+ }
|
|
|
+ node->color = Color::Black; // by this point node cant be null
|
|
|
+ }
|
|
|
+
|
|
|
+ static Node* successor(Node* node)
|
|
|
+ {
|
|
|
+ VERIFY(node);
|
|
|
+ if (node->right_child) {
|
|
|
+ node = node->right_child;
|
|
|
+ while (node->left_child)
|
|
|
+ node = node->left_child;
|
|
|
+ return node;
|
|
|
+ } else {
|
|
|
+ auto temp = node->parent;
|
|
|
+ while (temp && node == temp->right_child) {
|
|
|
+ node = temp;
|
|
|
+ temp = temp->parent;
|
|
|
+ }
|
|
|
+ return temp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static Node* predecessor(Node* node)
|
|
|
+ {
|
|
|
+ VERIFY(node);
|
|
|
+ if (node->left_child) {
|
|
|
+ node = node->left_child;
|
|
|
+ while (node->right_child)
|
|
|
+ node = node->right_child;
|
|
|
+ return node;
|
|
|
+ } else {
|
|
|
+ auto temp = node->parent;
|
|
|
+ while (temp && node == temp->left_child) {
|
|
|
+ node = temp;
|
|
|
+ temp = temp->parent;
|
|
|
+ }
|
|
|
+ return temp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ Node* m_root { nullptr };
|
|
|
+ size_t m_size { 0 };
|
|
|
+ Node* m_minimum { nullptr }; // maintained for O(1) begin()
|
|
|
+};
|
|
|
+
|
|
|
+template<typename TreeType, typename ElementType>
|
|
|
+class RedBlackTreeIterator {
|
|
|
+public:
|
|
|
+ RedBlackTreeIterator() = default;
|
|
|
+ bool operator!=(const RedBlackTreeIterator& other) const { return m_node != other.m_node; }
|
|
|
+ RedBlackTreeIterator& operator++()
|
|
|
+ {
|
|
|
+ if (!m_node)
|
|
|
+ return *this;
|
|
|
+ m_prev = m_node;
|
|
|
+ // the complexity is O(logn) for each successor call, but the total complexity for all elements comes out to O(n), meaning the amortized cost for a single call is O(1)
|
|
|
+ m_node = static_cast<typename TreeType::Node*>(TreeType::successor(m_node));
|
|
|
+ return *this;
|
|
|
+ }
|
|
|
+ RedBlackTreeIterator& operator--()
|
|
|
+ {
|
|
|
+ if (!m_prev)
|
|
|
+ return *this;
|
|
|
+ m_node = m_prev;
|
|
|
+ m_prev = static_cast<typename TreeType::Node*>(TreeType::predecessor(m_prev));
|
|
|
+ return *this;
|
|
|
+ }
|
|
|
+ ElementType& operator*() { return m_node->value; }
|
|
|
+ ElementType* operator->() { return &m_node->value; }
|
|
|
+ [[nodiscard]] bool is_end() const { return !m_node; }
|
|
|
+ [[nodiscard]] bool is_begin() const { return !m_prev; }
|
|
|
+
|
|
|
+private:
|
|
|
+ friend TreeType;
|
|
|
+ explicit RedBlackTreeIterator(typename TreeType::Node* node, typename TreeType::Node* prev = nullptr)
|
|
|
+ : m_node(node)
|
|
|
+ , m_prev(prev)
|
|
|
+ {
|
|
|
+ }
|
|
|
+ typename TreeType::Node* m_node { nullptr };
|
|
|
+ typename TreeType::Node* m_prev { nullptr };
|
|
|
+};
|
|
|
+
|
|
|
+template<Integral K, typename V>
|
|
|
+class RedBlackTree : public BaseRedBlackTree<K> {
|
|
|
+public:
|
|
|
+ RedBlackTree() = default;
|
|
|
+ virtual ~RedBlackTree() override
|
|
|
+ {
|
|
|
+ clear();
|
|
|
+ }
|
|
|
+
|
|
|
+ using BaseTree = BaseRedBlackTree<K>;
|
|
|
+
|
|
|
+ V* find(K key)
|
|
|
+ {
|
|
|
+ auto* node = static_cast<Node*>(BaseTree::find(this->m_root, key));
|
|
|
+ if (!node)
|
|
|
+ return nullptr;
|
|
|
+ return &node->value;
|
|
|
+ }
|
|
|
+
|
|
|
+ V* find_largest_not_above(K key)
|
|
|
+ {
|
|
|
+ auto* node = static_cast<Node*>(BaseTree::find_largest_not_above(this->m_root, key));
|
|
|
+ if (!node)
|
|
|
+ return nullptr;
|
|
|
+ return &node->value;
|
|
|
+ }
|
|
|
+
|
|
|
+ void insert(K key, const V& value)
|
|
|
+ {
|
|
|
+ insert(key, V(value));
|
|
|
+ }
|
|
|
+
|
|
|
+ void insert(K key, V&& value)
|
|
|
+ {
|
|
|
+ auto* node = new Node(key, move(value));
|
|
|
+ BaseTree::insert(node);
|
|
|
+ }
|
|
|
+
|
|
|
+ using Iterator = RedBlackTreeIterator<RedBlackTree, V>;
|
|
|
+ friend Iterator;
|
|
|
+ Iterator begin() { return Iterator(static_cast<Node*>(this->m_minimum)); }
|
|
|
+ Iterator end() { return {}; }
|
|
|
+ Iterator begin_from(K key) { return Iterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }
|
|
|
+
|
|
|
+ using ConstIterator = RedBlackTreeIterator<const RedBlackTree, const V>;
|
|
|
+ friend ConstIterator;
|
|
|
+ ConstIterator begin() const { return ConstIterator(static_cast<Node*>(this->m_minimum)); }
|
|
|
+ ConstIterator end() const { return {}; }
|
|
|
+ ConstIterator begin_from(K key) const { return ConstIterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }
|
|
|
+
|
|
|
+ V unsafe_remove(K key)
|
|
|
+ {
|
|
|
+ auto* node = BaseTree::find(this->m_root, key);
|
|
|
+ VERIFY(node);
|
|
|
+
|
|
|
+ BaseTree::remove(node);
|
|
|
+
|
|
|
+ V temp = move(static_cast<Node*>(node)->value);
|
|
|
+
|
|
|
+ node->right_child = nullptr;
|
|
|
+ node->left_child = nullptr;
|
|
|
+ delete node;
|
|
|
+
|
|
|
+ return temp;
|
|
|
+ }
|
|
|
+
|
|
|
+ bool remove(K key)
|
|
|
+ {
|
|
|
+ auto* node = BaseTree::find(this->m_root, key);
|
|
|
+ if (!node)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ BaseTree::remove(node);
|
|
|
+
|
|
|
+ node->right_child = nullptr;
|
|
|
+ node->left_child = nullptr;
|
|
|
+ delete node;
|
|
|
+
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ void clear()
|
|
|
+ {
|
|
|
+ if (this->m_root) {
|
|
|
+ delete this->m_root;
|
|
|
+ this->m_root = nullptr;
|
|
|
+ }
|
|
|
+ this->m_minimum = nullptr;
|
|
|
+ this->m_size = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+private:
|
|
|
+ struct Node : BaseRedBlackTree<K>::Node {
|
|
|
+
|
|
|
+ V value;
|
|
|
+
|
|
|
+ Node(K key, V value)
|
|
|
+ : BaseRedBlackTree<K>::Node(key)
|
|
|
+ , value(move(value))
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ ~Node()
|
|
|
+ {
|
|
|
+ if (this->left_child)
|
|
|
+ delete this->left_child;
|
|
|
+ if (this->right_child)
|
|
|
+ delete this->right_child;
|
|
|
+ }
|
|
|
+ };
|
|
|
+};
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+using AK::RedBlackTree;
|