LibJS: Use modulo() for modulo operations in Value.cpp

This commit is contained in:
Linus Groh 2022-12-12 21:16:18 +00:00
parent 074ba104c8
commit e4b388ea5a
Notes: sideshowbarker 2024-07-18 04:46:35 +09:00

View file

@ -889,8 +889,7 @@ ThrowCompletionOr<i32> Value::to_i32_slow_case(VM& vm) const
int_val = -int_val;
// 4. Let int32bit be int modulo 2^32.
auto remainder = fmod(int_val, 4294967296.0);
auto int32bit = remainder >= 0.0 ? remainder : remainder + 4294967296.0; // The notation “x modulo y” computes a value k of the same sign as y
auto int32bit = modulo(int_val, NumericLimits<u32>::max() + 1.0);
// 5. If int32bit ≥ 2^31, return 𝔽(int32bit - 2^32); otherwise return 𝔽(int32bit).
if (int32bit >= 2147483648.0)
@ -922,7 +921,7 @@ ThrowCompletionOr<u32> Value::to_u32(VM& vm) const
int_val = -int_val;
// 4. Let int32bit be int modulo 2^32.
auto int32bit = fmod(int_val, NumericLimits<u32>::max() + 1.0);
auto int32bit = modulo(int_val, NumericLimits<u32>::max() + 1.0);
// 5. Return 𝔽(int32bit).
// Cast to i64 here to ensure that the double --> u32 cast doesn't invoke undefined behavior
@ -947,8 +946,7 @@ ThrowCompletionOr<i16> Value::to_i16(VM& vm) const
int_val = -int_val;
// 4. Let int16bit be int modulo 2^16.
auto remainder = fmod(int_val, 65536.0);
auto int16bit = remainder >= 0.0 ? remainder : remainder + 65536.0; // The notation “x modulo y” computes a value k of the same sign as y
auto int16bit = modulo(int_val, NumericLimits<u16>::max() + 1.0);
// 5. If int16bit ≥ 2^15, return 𝔽(int16bit - 2^16); otherwise return 𝔽(int16bit).
if (int16bit >= 32768.0)
@ -972,9 +970,7 @@ ThrowCompletionOr<u16> Value::to_u16(VM& vm) const
int_val = -int_val;
// 4. Let int16bit be int modulo 2^16.
auto int16bit = fmod(int_val, NumericLimits<u16>::max() + 1.0);
if (int16bit < 0)
int16bit += NumericLimits<u16>::max() + 1.0;
auto int16bit = modulo(int_val, NumericLimits<u16>::max() + 1.0);
// 5. Return 𝔽(int16bit).
return static_cast<u16>(int16bit);
@ -997,8 +993,7 @@ ThrowCompletionOr<i8> Value::to_i8(VM& vm) const
int_val = -int_val;
// 4. Let int8bit be int modulo 2^8.
auto remainder = fmod(int_val, 256.0);
auto int8bit = remainder >= 0.0 ? remainder : remainder + 256.0; // The notation “x modulo y” computes a value k of the same sign as y
auto int8bit = modulo(int_val, NumericLimits<u8>::max() + 1.0);
// 5. If int8bit ≥ 2^7, return 𝔽(int8bit - 2^8); otherwise return 𝔽(int8bit).
if (int8bit >= 128.0)
@ -1022,9 +1017,7 @@ ThrowCompletionOr<u8> Value::to_u8(VM& vm) const
int_val = -int_val;
// 4. Let int8bit be int modulo 2^8.
auto int8bit = fmod(int_val, NumericLimits<u8>::max() + 1.0);
if (int8bit < 0)
int8bit += NumericLimits<u8>::max() + 1.0;
auto int8bit = modulo(int_val, NumericLimits<u8>::max() + 1.0);
// 5. Return 𝔽(int8bit).
return static_cast<u8>(int8bit);