|
@@ -15,6 +15,7 @@
|
|
|
#include <LibJS/Runtime/Intl/NumberFormatConstructor.h>
|
|
|
#include <LibJS/Runtime/NumberObject.h>
|
|
|
#include <LibJS/Runtime/NumberPrototype.h>
|
|
|
+#include <math.h>
|
|
|
|
|
|
namespace JS {
|
|
|
|
|
@@ -29,6 +30,23 @@ static const u8 max_precision_for_radix[37] = {
|
|
|
|
|
|
static char digits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
|
|
|
|
+static String decimal_digits_to_string(double number)
|
|
|
+{
|
|
|
+ StringBuilder builder;
|
|
|
+
|
|
|
+ double integral_part = 0;
|
|
|
+ (void)modf(number, &integral_part);
|
|
|
+
|
|
|
+ while (integral_part > 0) {
|
|
|
+ auto index = static_cast<size_t>(fmod(integral_part, 10));
|
|
|
+ builder.append(digits[index]);
|
|
|
+
|
|
|
+ integral_part = floor(integral_part / 10.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ return builder.build().reverse();
|
|
|
+}
|
|
|
+
|
|
|
NumberPrototype::NumberPrototype(GlobalObject& global_object)
|
|
|
: NumberObject(0, *global_object.object_prototype())
|
|
|
{
|
|
@@ -41,6 +59,7 @@ void NumberPrototype::initialize(GlobalObject& object)
|
|
|
u8 attr = Attribute::Configurable | Attribute::Writable;
|
|
|
define_native_function(vm.names.toFixed, to_fixed, 1, attr);
|
|
|
define_native_function(vm.names.toLocaleString, to_locale_string, 0, attr);
|
|
|
+ define_native_function(vm.names.toPrecision, to_precision, 1, attr);
|
|
|
define_native_function(vm.names.toString, to_string, 1, attr);
|
|
|
define_native_function(vm.names.valueOf, value_of, 0, attr);
|
|
|
}
|
|
@@ -133,6 +152,138 @@ JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_locale_string)
|
|
|
return js_string(vm, move(formatted));
|
|
|
}
|
|
|
|
|
|
+// 21.1.3.5 Number.prototype.toPrecision ( precision ), https://tc39.es/ecma262/#sec-number.prototype.toprecision
|
|
|
+JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_precision)
|
|
|
+{
|
|
|
+ auto precision_value = vm.argument(0);
|
|
|
+
|
|
|
+ // 1. Let x be ? thisNumberValue(this value).
|
|
|
+ auto number_value = TRY(this_number_value(global_object, vm.this_value(global_object)));
|
|
|
+
|
|
|
+ // 2. If precision is undefined, return ! ToString(x).
|
|
|
+ if (precision_value.is_undefined())
|
|
|
+ return js_string(vm, MUST(number_value.to_string(global_object)));
|
|
|
+
|
|
|
+ // 3. Let p be ? ToIntegerOrInfinity(precision).
|
|
|
+ auto precision = TRY(precision_value.to_integer_or_infinity(global_object));
|
|
|
+
|
|
|
+ // 4. If x is not finite, return ! Number::toString(x).
|
|
|
+ if (!number_value.is_finite_number())
|
|
|
+ return js_string(vm, MUST(number_value.to_string(global_object)));
|
|
|
+
|
|
|
+ // 5. If p < 1 or p > 100, throw a RangeError exception.
|
|
|
+ if ((precision < 1) || (precision > 100))
|
|
|
+ return vm.throw_completion<RangeError>(global_object, ErrorType::InvalidPrecision);
|
|
|
+
|
|
|
+ // 6. Set x to ℝ(x).
|
|
|
+ auto number = number_value.as_double();
|
|
|
+
|
|
|
+ // 7. Let s be the empty String.
|
|
|
+ auto sign = ""sv;
|
|
|
+
|
|
|
+ String number_string;
|
|
|
+ int exponent = 0;
|
|
|
+
|
|
|
+ // 8. If x < 0, then
|
|
|
+ if (number < 0) {
|
|
|
+ // a. Set s to the code unit 0x002D (HYPHEN-MINUS).
|
|
|
+ sign = "-"sv;
|
|
|
+
|
|
|
+ // b. Set x to -x.
|
|
|
+ number = -number;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 9. If x = 0, then
|
|
|
+ if (number == 0) {
|
|
|
+ // a. Let m be the String value consisting of p occurrences of the code unit 0x0030 (DIGIT ZERO).
|
|
|
+ number_string = String::repeated('0', precision);
|
|
|
+
|
|
|
+ // b. Let e be 0.
|
|
|
+ exponent = 0;
|
|
|
+ }
|
|
|
+ // 10. Else,
|
|
|
+ else {
|
|
|
+ // FIXME: The computations below fall apart for large values of 'p'. A double typically has 52 mantissa bits, which gives us
|
|
|
+ // up to 2^52 before loss of precision. However, the largest value of 'p' may be 100, resulting in numbers on the order
|
|
|
+ // of 10^100, thus we lose precision in these computations.
|
|
|
+
|
|
|
+ // a. Let e and n be integers such that 10^(p-1) ≤ n < 10^p and for which n × 10^(e-p+1) - x is as close to zero as possible.
|
|
|
+ // If there are two such sets of e and n, pick the e and n for which n × 10^(e-p+1) is larger.
|
|
|
+ exponent = static_cast<int>(floor(log10(number)));
|
|
|
+ number = round(number / pow(10, exponent - precision + 1));
|
|
|
+
|
|
|
+ // b. Let m be the String value consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
|
|
|
+ number_string = decimal_digits_to_string(number);
|
|
|
+
|
|
|
+ // c. If e < -6 or e ≥ p, then
|
|
|
+ if ((exponent < -6) || (exponent >= precision)) {
|
|
|
+ // i. Assert: e ≠ 0.
|
|
|
+ VERIFY(exponent != 0);
|
|
|
+
|
|
|
+ // ii. If p ≠ 1, then
|
|
|
+ if (precision != 1) {
|
|
|
+ // 1. Let a be the first code unit of m.
|
|
|
+ auto first = number_string.substring_view(0, 1);
|
|
|
+
|
|
|
+ // 2. Let b be the other p - 1 code units of m.
|
|
|
+ auto second = number_string.substring_view(1);
|
|
|
+
|
|
|
+ // 3. Set m to the string-concatenation of a, ".", and b.
|
|
|
+ number_string = String::formatted("{}.{}", first, second);
|
|
|
+ }
|
|
|
+
|
|
|
+ char exponent_sign = 0;
|
|
|
+
|
|
|
+ // iii. If e > 0, then
|
|
|
+ if (exponent > 0) {
|
|
|
+ // 1. Let c be the code unit 0x002B (PLUS SIGN).
|
|
|
+ exponent_sign = '+';
|
|
|
+ }
|
|
|
+ // iv. Else,
|
|
|
+ else {
|
|
|
+ // 1. Assert: e < 0.
|
|
|
+ VERIFY(exponent < 0);
|
|
|
+
|
|
|
+ // 2. Let c be the code unit 0x002D (HYPHEN-MINUS).
|
|
|
+ exponent_sign = '-';
|
|
|
+
|
|
|
+ // 3. Set e to -e.
|
|
|
+ exponent = -exponent;
|
|
|
+ }
|
|
|
+
|
|
|
+ // v. Let d be the String value consisting of the digits of the decimal representation of e (in order, with no leading zeroes).
|
|
|
+ auto exponent_string = String::number(exponent);
|
|
|
+
|
|
|
+ // vi. Return the string-concatenation of s, m, the code unit 0x0065 (LATIN SMALL LETTER E), c, and d.
|
|
|
+ return js_string(vm, String::formatted("{}{}e{}{}", sign, number_string, exponent_sign, exponent_string));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 11. If e = p - 1, return the string-concatenation of s and m.
|
|
|
+ if (exponent == precision - 1)
|
|
|
+ return js_string(vm, String::formatted("{}{}", sign, number_string));
|
|
|
+
|
|
|
+ // 12. If e ≥ 0, then
|
|
|
+ if (exponent >= 0) {
|
|
|
+ // a. Set m to the string-concatenation of the first e + 1 code units of m, the code unit 0x002E (FULL STOP), and the remaining p - (e + 1) code units of m.
|
|
|
+ number_string = String::formatted(
|
|
|
+ "{}.{}",
|
|
|
+ number_string.substring_view(0, exponent + 1),
|
|
|
+ number_string.substring_view(exponent + 1));
|
|
|
+ }
|
|
|
+ // 13. Else,
|
|
|
+ else {
|
|
|
+ // a. Set m to the string-concatenation of the code unit 0x0030 (DIGIT ZERO), the code unit 0x002E (FULL STOP), -(e + 1) occurrences of the code unit 0x0030 (DIGIT ZERO), and the String m.
|
|
|
+ number_string = String::formatted(
|
|
|
+ "0.{}{}",
|
|
|
+ String::repeated('0', -1 * (exponent + 1)),
|
|
|
+ number_string);
|
|
|
+ }
|
|
|
+
|
|
|
+ // 14. Return the string-concatenation of s and m.
|
|
|
+ return js_string(vm, String::formatted("{}{}", sign, number_string));
|
|
|
+}
|
|
|
+
|
|
|
// 21.1.3.6 Number.prototype.toString ( [ radix ] ), https://tc39.es/ecma262/#sec-number.prototype.tostring
|
|
|
JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_string)
|
|
|
{
|