|
@@ -1,40 +1,16 @@
|
|
|
/*
|
|
|
- * Copyright (c) 2022, MacDue <macdue@dueutil.tech>
|
|
|
+ * Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
|
|
|
*
|
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
|
*/
|
|
|
|
|
|
-#include <AK/Checked.h>
|
|
|
#include <AK/Math.h>
|
|
|
-#include <LibGfx/Gamma.h>
|
|
|
-#include <LibGfx/Line.h>
|
|
|
+#include <LibGfx/Gradients.h>
|
|
|
#include <LibWeb/CSS/StyleValue.h>
|
|
|
#include <LibWeb/Painting/GradientPainting.h>
|
|
|
|
|
|
namespace Web::Painting {
|
|
|
|
|
|
-static float normalized_gradient_angle_radians(float gradient_angle)
|
|
|
-{
|
|
|
- // Adjust angle so 0 degrees is bottom
|
|
|
- float real_angle = 90 - gradient_angle;
|
|
|
- return real_angle * (AK::Pi<float> / 180);
|
|
|
-}
|
|
|
-
|
|
|
-template<typename T>
|
|
|
-static float calculate_gradient_length(Gfx::Size<T> gradient_size, float sin_angle, float cos_angle)
|
|
|
-{
|
|
|
- return AK::fabs(gradient_size.height().value() * sin_angle) + AK::fabs(gradient_size.width().value() * cos_angle);
|
|
|
-}
|
|
|
-
|
|
|
-template<typename T>
|
|
|
-static float calculate_gradient_length(Gfx::Size<T> gradient_size, float gradient_angle)
|
|
|
-{
|
|
|
- float angle = normalized_gradient_angle_radians(gradient_angle);
|
|
|
- float sin_angle, cos_angle;
|
|
|
- AK::sincos(angle, sin_angle, cos_angle);
|
|
|
- return calculate_gradient_length(gradient_size, sin_angle, cos_angle);
|
|
|
-}
|
|
|
-
|
|
|
static ColorStopData resolve_color_stop_positions(auto const& color_stop_list, auto resolve_position_to_float, bool repeating)
|
|
|
{
|
|
|
VERIFY(color_stop_list.size() >= 2);
|
|
@@ -50,7 +26,7 @@ static ColorStopData resolve_color_stop_positions(auto const& color_stop_list, a
|
|
|
|
|
|
resolved_color_stops.ensure_capacity(expanded_size);
|
|
|
for (auto& stop : color_stop_list) {
|
|
|
- auto resolved_stop = ColorStop { .color = stop.color_stop.color };
|
|
|
+ auto resolved_stop = Gfx::ColorStop { .color = stop.color_stop.color };
|
|
|
for (int i = 0; i < color_stop_length(stop); i++)
|
|
|
resolved_color_stops.append(resolved_stop);
|
|
|
}
|
|
@@ -133,7 +109,7 @@ static ColorStopData resolve_color_stop_positions(auto const& color_stop_list, a
|
|
|
LinearGradientData resolve_linear_gradient_data(Layout::Node const& node, CSSPixelSize gradient_size, CSS::LinearGradientStyleValue const& linear_gradient)
|
|
|
{
|
|
|
auto gradient_angle = linear_gradient.angle_degrees(gradient_size);
|
|
|
- auto gradient_length_px = calculate_gradient_length(gradient_size, gradient_angle);
|
|
|
+ auto gradient_length_px = Gfx::calculate_gradient_length(gradient_size, gradient_angle);
|
|
|
auto gradient_length = CSS::Length::make_px(gradient_length_px);
|
|
|
|
|
|
auto resolved_color_stops = resolve_color_stop_positions(
|
|
@@ -168,158 +144,19 @@ RadialGradientData resolve_radial_gradient_data(Layout::Node const& node, CSSPix
|
|
|
return { resolved_color_stops };
|
|
|
}
|
|
|
|
|
|
-static float color_stop_step(ColorStop const& previous_stop, ColorStop const& next_stop, float position)
|
|
|
-{
|
|
|
- if (position < previous_stop.position)
|
|
|
- return 0;
|
|
|
- if (position > next_stop.position)
|
|
|
- return 1;
|
|
|
- // For any given point between the two color stops,
|
|
|
- // determine the point’s location as a percentage of the distance between the two color stops.
|
|
|
- // Let this percentage be P.
|
|
|
- auto stop_length = next_stop.position - previous_stop.position;
|
|
|
- // FIXME: Avoids NaNs... Still not quite correct?
|
|
|
- if (stop_length <= 0)
|
|
|
- return 1;
|
|
|
- auto p = (position - previous_stop.position) / stop_length;
|
|
|
- if (!next_stop.transition_hint.has_value())
|
|
|
- return p;
|
|
|
- if (*next_stop.transition_hint >= 1)
|
|
|
- return 0;
|
|
|
- if (*next_stop.transition_hint <= 0)
|
|
|
- return 1;
|
|
|
- // Let C, the color weighting at that point, be equal to P^(logH(.5)).
|
|
|
- auto c = AK::pow(p, AK::log<float>(0.5) / AK::log(*next_stop.transition_hint));
|
|
|
- // The color at that point is then a linear blend between the colors of the two color stops,
|
|
|
- // blending (1 - C) of the first stop and C of the second stop.
|
|
|
- return c;
|
|
|
-}
|
|
|
-
|
|
|
-class GradientLine {
|
|
|
-public:
|
|
|
- GradientLine(int gradient_length, ColorStopData const& color_stops)
|
|
|
- : m_repeating { color_stops.repeat_length.has_value() }
|
|
|
- , m_start_offset { round_to<int>((m_repeating ? color_stops.list.first().position : 0.0f) * gradient_length) }
|
|
|
- {
|
|
|
- // Note: color_count will be < gradient_length for repeating gradients.
|
|
|
- auto color_count = round_to<int>(color_stops.repeat_length.value_or(1.0f) * gradient_length);
|
|
|
- m_gradient_line_colors.resize(color_count);
|
|
|
- // Note: color.mixed_with() performs premultiplied alpha mixing when necessary as defined in:
|
|
|
- // https://drafts.csswg.org/css-images/#coloring-gradient-line
|
|
|
- auto& stop_list = color_stops.list;
|
|
|
- for (int loc = 0; loc < color_count; loc++) {
|
|
|
- auto relative_loc = float(loc + m_start_offset) / gradient_length;
|
|
|
- Gfx::Color gradient_color = stop_list[0].color.mixed_with(
|
|
|
- stop_list[1].color,
|
|
|
- color_stop_step(stop_list[0], stop_list[1], relative_loc));
|
|
|
- for (size_t i = 1; i < stop_list.size() - 1; i++) {
|
|
|
- gradient_color = gradient_color.mixed_with(
|
|
|
- stop_list[i + 1].color,
|
|
|
- color_stop_step(stop_list[i], stop_list[i + 1], relative_loc));
|
|
|
- }
|
|
|
- m_gradient_line_colors[loc] = gradient_color;
|
|
|
- if (gradient_color.alpha() < 255)
|
|
|
- m_requires_blending = true;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- Gfx::Color get_color(i64 index) const
|
|
|
- {
|
|
|
- return m_gradient_line_colors[clamp(index, 0, m_gradient_line_colors.size() - 1)];
|
|
|
- }
|
|
|
-
|
|
|
- Gfx::Color sample_color(float loc) const
|
|
|
- {
|
|
|
- auto repeat_wrap_if_required = [&](i64 loc) {
|
|
|
- if (m_repeating)
|
|
|
- return (loc + m_start_offset) % static_cast<i64>(m_gradient_line_colors.size());
|
|
|
- return loc;
|
|
|
- };
|
|
|
- auto int_loc = static_cast<i64>(floor(loc));
|
|
|
- auto blend = loc - int_loc;
|
|
|
- auto color = get_color(repeat_wrap_if_required(int_loc));
|
|
|
- // Blend between the two neighbouring colors (this fixes some nasty aliasing issues at small angles)
|
|
|
- if (blend >= 0.004f)
|
|
|
- color = color.mixed_with(get_color(repeat_wrap_if_required(int_loc + 1)), blend);
|
|
|
- return color;
|
|
|
- }
|
|
|
-
|
|
|
- void paint_into_rect(Gfx::Painter& painter, DevicePixelRect rect, auto location_transform)
|
|
|
- {
|
|
|
- painter.fill_pixels(
|
|
|
- rect.to_type<int>(), [&](auto point) {
|
|
|
- return sample_color(location_transform(point.x(), point.y()));
|
|
|
- },
|
|
|
- m_requires_blending);
|
|
|
- }
|
|
|
-
|
|
|
-private:
|
|
|
- bool m_repeating;
|
|
|
- int m_start_offset;
|
|
|
- Vector<Gfx::Color, 1024> m_gradient_line_colors;
|
|
|
-
|
|
|
- bool m_requires_blending = false;
|
|
|
-};
|
|
|
-
|
|
|
void paint_linear_gradient(PaintContext& context, DevicePixelRect const& gradient_rect, LinearGradientData const& data)
|
|
|
{
|
|
|
- float angle = normalized_gradient_angle_radians(data.gradient_angle);
|
|
|
- float sin_angle, cos_angle;
|
|
|
- AK::sincos(angle, sin_angle, cos_angle);
|
|
|
-
|
|
|
- // Full length of the gradient
|
|
|
- auto gradient_length = calculate_gradient_length(gradient_rect.size(), sin_angle, cos_angle);
|
|
|
- DevicePixelPoint offset { cos_angle * (gradient_length / 2), sin_angle * (gradient_length / 2) };
|
|
|
- auto center = gradient_rect.translated(-gradient_rect.location()).center();
|
|
|
- auto start_point = center.to_type<int>() - offset.to_type<int>();
|
|
|
- // Rotate gradient line to be horizontal
|
|
|
- auto rotated_start_point_x = start_point.x() * cos_angle - start_point.y() * -sin_angle;
|
|
|
-
|
|
|
- GradientLine gradient_line(gradient_length, data.color_stops);
|
|
|
- gradient_line.paint_into_rect(context.painter(), gradient_rect, [&](DevicePixels x, DevicePixels y) {
|
|
|
- return (x.value() * cos_angle - (gradient_rect.height() - y).value() * -sin_angle) - rotated_start_point_x;
|
|
|
- });
|
|
|
+ context.painter().fill_rect_with_linear_gradient(gradient_rect.to_type<int>(), data.color_stops.list, data.gradient_angle, data.color_stops.repeat_length);
|
|
|
}
|
|
|
|
|
|
void paint_conic_gradient(PaintContext& context, DevicePixelRect const& gradient_rect, ConicGradientData const& data, DevicePixelPoint position)
|
|
|
{
|
|
|
- // FIXME: Do we need/want sub-degree accuracy for the gradient line?
|
|
|
- GradientLine gradient_line(360, data.color_stops);
|
|
|
- float start_angle = (360.0f - data.start_angle) + 90.0f;
|
|
|
- // Translate position/center to the center of the pixel (avoids some funky painting)
|
|
|
- auto center_point = Gfx::FloatPoint { position.to_type<int>() }.translated(0.5, 0.5);
|
|
|
- // The flooring can make gradients that want soft edges look worse, so only floor if we have hard edges.
|
|
|
- // Which makes sure the hard edge stay hard edges :^)
|
|
|
- bool should_floor_angles = false;
|
|
|
- auto& color_stops = data.color_stops.list;
|
|
|
- for (size_t i = 0; i < color_stops.size() - 1; i++) {
|
|
|
- if (color_stops[i + 1].position - color_stops[i].position <= 0.01f) {
|
|
|
- should_floor_angles = true;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- gradient_line.paint_into_rect(context.painter(), gradient_rect, [&](DevicePixels x, DevicePixels y) {
|
|
|
- auto point = Gfx::FloatPoint { x.value(), y.value() } - center_point;
|
|
|
- // FIXME: We could probably get away with some approximation here:
|
|
|
- auto loc = fmod((AK::atan2(point.y(), point.x()) * 180.0f / AK::Pi<float> + 360.0f + start_angle), 360.0f);
|
|
|
- return should_floor_angles ? floor(loc) : loc;
|
|
|
- });
|
|
|
+ context.painter().fill_rect_with_conic_gradient(gradient_rect.to_type<int>(), data.color_stops.list, position.to_type<int>(), data.start_angle, data.color_stops.repeat_length);
|
|
|
}
|
|
|
|
|
|
void paint_radial_gradient(PaintContext& context, DevicePixelRect const& gradient_rect, RadialGradientData const& data, DevicePixelPoint center, DevicePixelSize size)
|
|
|
{
|
|
|
- // A conservative guesstimate on how many colors we need to generate:
|
|
|
- auto max_dimension = max(gradient_rect.width(), gradient_rect.height());
|
|
|
- auto max_visible_gradient = max(max_dimension / 2, min(size.width(), max_dimension.value())).value();
|
|
|
- GradientLine gradient_line(max_visible_gradient, data.color_stops);
|
|
|
- auto center_point = Gfx::FloatPoint { center.to_type<int>() }.translated(0.5, 0.5);
|
|
|
- gradient_line.paint_into_rect(context.painter(), gradient_rect, [&](DevicePixels x, DevicePixels y) {
|
|
|
- // FIXME: See if there's a more efficient calculation we do there :^)
|
|
|
- auto point = Gfx::FloatPoint(x.value(), y.value()) - center_point;
|
|
|
- auto gradient_x = point.x() / size.width().value();
|
|
|
- auto gradient_y = point.y() / size.height().value();
|
|
|
- return AK::sqrt(gradient_x * gradient_x + gradient_y * gradient_y) * max_visible_gradient;
|
|
|
- });
|
|
|
+ context.painter().fill_rect_with_radial_gradient(gradient_rect.to_type<int>(), data.color_stops.list, center.to_type<int>(), size.to_type<int>(), data.color_stops.repeat_length);
|
|
|
}
|
|
|
|
|
|
}
|