LibGfx: Delete DeprecatedPath

This commit is contained in:
Pavel Shliak 2024-11-25 17:53:30 +04:00 committed by Alexander Kalenik
parent dbfe5be9ff
commit af9d855b70
Notes: github-actions[bot] 2024-11-25 20:14:44 +00:00
8 changed files with 0 additions and 710 deletions

View file

@ -1,448 +0,0 @@
/*
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Math.h>
#include <AK/StringBuilder.h>
#include <LibGfx/BoundingBox.h>
#include <LibGfx/DeprecatedPainter.h>
#include <LibGfx/DeprecatedPath.h>
namespace Gfx {
void DeprecatedPath::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
{
float sin_x_rotation;
float cos_x_rotation;
AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
float sin_angle;
float cos_angle;
AK::sincos(t, sin_angle, cos_angle);
point = FloatPoint {
center.x()
+ radii.width() * cos_x_rotation * cos_angle
- radii.height() * sin_x_rotation * sin_angle,
center.y()
+ radii.width() * sin_x_rotation * cos_angle
+ radii.height() * cos_x_rotation * sin_angle,
};
derivative = FloatPoint {
-radii.width() * cos_x_rotation * sin_angle
- radii.height() * sin_x_rotation * cos_angle,
-radii.width() * sin_x_rotation * sin_angle
+ radii.height() * cos_x_rotation * cos_angle,
};
};
auto approximate_arc_between = [&](float start_angle, float end_angle) {
auto t = AK::tan((end_angle - start_angle) / 2);
auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
FloatPoint p1, d1;
FloatPoint p2, d2;
arc_point_and_derivative(start_angle, p1, d1);
arc_point_and_derivative(end_angle, p2, d2);
auto q1 = p1 + d1.scaled(alpha, alpha);
auto q2 = p2 - d2.scaled(alpha, alpha);
cubic_bezier_curve_to(q1, q2, p2);
};
// FIXME: Come up with a more mathematically sound step size (using some error calculation).
auto step = theta_delta;
int step_count = 1;
while (fabs(step) > AK::Pi<float> / 4) {
step /= 2;
step_count *= 2;
}
float prev = theta;
float t = prev + step;
for (int i = 0; i < step_count; i++, prev = t, t += step)
approximate_arc_between(prev, t);
}
void DeprecatedPath::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
{
auto next_point = point;
double rx = radii.width();
double ry = radii.height();
double x_axis_rotation_s;
double x_axis_rotation_c;
AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
FloatPoint last_point = this->last_point();
// Step 1 of out-of-range radii correction
if (rx == 0.0 || ry == 0.0) {
append_segment<DeprecatedPathSegment::LineTo>(next_point);
return;
}
// Step 2 of out-of-range radii correction
if (rx < 0)
rx *= -1.0;
if (ry < 0)
ry *= -1.0;
// POSSIBLY HACK: Handle the case where both points are the same.
auto same_endpoints = next_point == last_point;
if (same_endpoints) {
if (!large_arc) {
// Nothing is going to be drawn anyway.
return;
}
// Move the endpoint by a small amount to avoid division by zero.
next_point.translate_by(0.01f, 0.01f);
}
// Find (cx, cy), theta_1, theta_delta
// Step 1: Compute (x1', y1')
auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
// Step 2: Compute (cx', cy')
double x1p_sq = x1p * x1p;
double y1p_sq = y1p * y1p;
double rx_sq = rx * rx;
double ry_sq = ry * ry;
// Step 3 of out-of-range radii correction
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
double multiplier;
if (lambda > 1.0) {
auto lambda_sqrt = AK::sqrt(lambda);
rx *= lambda_sqrt;
ry *= lambda_sqrt;
multiplier = 0.0;
} else {
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
multiplier = AK::sqrt(AK::max(0., numerator) / denominator);
}
if (large_arc == sweep)
multiplier *= -1.0;
double cxp = multiplier * rx * y1p / ry;
double cyp = multiplier * -ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx', cy')
x_avg = (last_point.x() + next_point.x()) / 2.0f;
y_avg = (last_point.y() + next_point.y()) / 2.0f;
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
auto theta_delta = theta_2 - theta_1;
if (!sweep && theta_delta > 0.0) {
theta_delta -= 2 * AK::Pi<double>;
} else if (sweep && theta_delta < 0) {
theta_delta += 2 * AK::Pi<double>;
}
approximate_elliptical_arc_with_cubic_beziers(
{ cx, cy },
{ rx, ry },
x_axis_rotation,
theta_1,
theta_delta);
}
void DeprecatedPath::close()
{
// If there's no `moveto` starting this subpath assume the start is (0, 0).
FloatPoint first_point_in_subpath = { 0, 0 };
for (auto it = end(); it-- != begin();) {
auto segment = *it;
if (segment.command() == DeprecatedPathSegment::MoveTo) {
first_point_in_subpath = segment.point();
break;
}
}
if (first_point_in_subpath != last_point())
line_to(first_point_in_subpath);
}
void DeprecatedPath::close_all_subpaths()
{
auto it = begin();
// Note: Get the end outside the loop as closing subpaths will move the end.
auto end = this->end();
while (it < end) {
// If there's no `moveto` starting this subpath assume the start is (0, 0).
FloatPoint first_point_in_subpath = { 0, 0 };
auto segment = *it;
if (segment.command() == DeprecatedPathSegment::MoveTo) {
first_point_in_subpath = segment.point();
++it;
}
// Find the end of the current subpath.
FloatPoint cursor = first_point_in_subpath;
while (it < end) {
auto segment = *it;
if (segment.command() == DeprecatedPathSegment::MoveTo)
break;
cursor = segment.point();
++it;
}
// Close the subpath.
if (first_point_in_subpath != cursor) {
move_to(cursor);
line_to(first_point_in_subpath);
}
}
}
ByteString DeprecatedPath::to_byte_string() const
{
// Dumps this path as an SVG compatible string.
StringBuilder builder;
if (is_empty() || m_commands.first() != DeprecatedPathSegment::MoveTo)
builder.append("M 0,0"sv);
for (auto segment : *this) {
if (!builder.is_empty())
builder.append(' ');
switch (segment.command()) {
case DeprecatedPathSegment::MoveTo:
builder.append('M');
break;
case DeprecatedPathSegment::LineTo:
builder.append('L');
break;
case DeprecatedPathSegment::QuadraticBezierCurveTo:
builder.append('Q');
break;
case DeprecatedPathSegment::CubicBezierCurveTo:
builder.append('C');
break;
}
for (auto point : segment.points())
builder.appendff(" {},{}", point.x(), point.y());
}
return builder.to_byte_string();
}
void DeprecatedPath::segmentize_path()
{
Vector<FloatLine> segments;
FloatBoundingBox bounding_box;
auto add_line = [&](auto const& p0, auto const& p1) {
segments.append({ p0, p1 });
bounding_box.add_point(p1);
};
FloatPoint cursor { 0, 0 };
for (auto segment : *this) {
switch (segment.command()) {
case DeprecatedPathSegment::MoveTo:
bounding_box.add_point(segment.point());
break;
case DeprecatedPathSegment::LineTo: {
add_line(cursor, segment.point());
break;
}
case DeprecatedPathSegment::QuadraticBezierCurveTo: {
DeprecatedPainter::for_each_line_segment_on_bezier_curve(segment.through(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1);
});
break;
}
case DeprecatedPathSegment::CubicBezierCurveTo: {
DeprecatedPainter::for_each_line_segment_on_cubic_bezier_curve(segment.through_0(), segment.through_1(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1);
});
break;
}
}
cursor = segment.point();
}
m_split_lines = SplitLines { move(segments), bounding_box };
}
DeprecatedPath DeprecatedPath::copy_transformed(Gfx::AffineTransform const& transform) const
{
DeprecatedPath result;
result.m_commands = m_commands;
result.m_points.ensure_capacity(m_points.size());
for (auto point : m_points)
result.m_points.unchecked_append(transform.map(point));
return result;
}
template<typename T>
struct RoundTrip {
RoundTrip(ReadonlySpan<T> span)
: m_span(span)
{
}
size_t size() const
{
return m_span.size() * 2 - 1;
}
T const& operator[](size_t index) const
{
// Follow the path:
if (index < m_span.size())
return m_span[index];
// Then in reverse:
if (index < size())
return m_span[size() - index - 1];
// Then wrap around again:
return m_span[index - size() + 1];
}
private:
ReadonlySpan<T> m_span;
};
DeprecatedPath DeprecatedPath::stroke_to_fill(float thickness) const
{
// Note: This convolves a polygon with the path using the algorithm described
// in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
VERIFY(thickness > 0);
auto lines = split_lines();
if (lines.is_empty())
return DeprecatedPath {};
// Paths can be disconnected, which a pain to deal with, so split it up.
Vector<Vector<FloatPoint>> segments;
segments.append({ lines.first().a() });
for (auto& line : lines) {
if (line.a() == segments.last().last()) {
segments.last().append(line.b());
} else {
segments.append({ line.a(), line.b() });
}
}
constexpr auto flatness = 0.15f;
auto pen_vertex_count = 4;
if (thickness > flatness) {
pen_vertex_count = max(
static_cast<int>(ceilf(AK::Pi<float>
/ acosf(1 - (2 * flatness) / thickness))),
pen_vertex_count);
}
if (pen_vertex_count % 2 == 1)
pen_vertex_count += 1;
Vector<FloatPoint, 128> pen_vertices;
pen_vertices.ensure_capacity(pen_vertex_count);
// Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
// to be a circle (or an approximation of one), but other shapes are untested.
float theta = 0;
float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
for (int i = 0; i < pen_vertex_count; i++) {
float sin_theta;
float cos_theta;
AK::sincos(theta, sin_theta, cos_theta);
pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
theta -= theta_delta;
}
auto wrapping_index = [](auto& vertices, auto index) {
return vertices[(index + vertices.size()) % vertices.size()];
};
auto angle_between = [](auto p1, auto p2) {
auto delta = p2 - p1;
return atan2f(delta.y(), delta.x());
};
struct ActiveRange {
float start;
float end;
bool in_range(float angle) const
{
// Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
return ((angle <= start && angle >= end)
|| (start < end && angle <= start)
|| (start < end && angle >= end));
}
};
Vector<ActiveRange, 128> active_ranges;
active_ranges.ensure_capacity(pen_vertices.size());
for (auto i = 0; i < pen_vertex_count; i++) {
active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
}
auto clockwise = [](float current_angle, float target_angle) {
if (target_angle < 0)
target_angle += AK::Pi<float> * 2;
if (current_angle < 0)
current_angle += AK::Pi<float> * 2;
if (target_angle < current_angle)
target_angle += AK::Pi<float> * 2;
return (target_angle - current_angle) <= AK::Pi<float>;
};
DeprecatedPath convolution;
for (auto& segment : segments) {
RoundTrip<FloatPoint> shape { segment };
bool first = true;
auto add_vertex = [&](auto v) {
if (first) {
convolution.move_to(v);
first = false;
} else {
convolution.line_to(v);
}
};
auto shape_idx = 0u;
auto slope = [&] {
return angle_between(shape[shape_idx], shape[shape_idx + 1]);
};
auto start_slope = slope();
// Note: At least one range must be active.
auto active = *active_ranges.find_first_index_if([&](auto& range) {
return range.in_range(start_slope);
});
while (shape_idx < shape.size()) {
add_vertex(shape[shape_idx] + pen_vertices[active]);
auto slope_now = slope();
auto range = active_ranges[active];
if (range.in_range(slope_now)) {
shape_idx++;
} else {
if (clockwise(slope_now, range.end)) {
if (active == static_cast<size_t>(pen_vertex_count - 1))
active = 0;
else
active++;
} else {
if (active == 0)
active = pen_vertex_count - 1;
else
active--;
}
}
}
}
return convolution;
}
}

View file

@ -1,256 +0,0 @@
/*
* Copyright (c) 2020, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Optional.h>
#include <AK/Vector.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Line.h>
#include <LibGfx/Point.h>
#include <LibGfx/Rect.h>
namespace Gfx {
class DeprecatedPath;
class DeprecatedPathSegment {
public:
enum Command : u8 {
MoveTo,
LineTo,
QuadraticBezierCurveTo,
CubicBezierCurveTo,
};
ALWAYS_INLINE Command command() const { return m_command; }
ALWAYS_INLINE FloatPoint point() const { return m_points.last(); }
ALWAYS_INLINE FloatPoint through() const
{
VERIFY(m_command == Command::QuadraticBezierCurveTo);
return m_points[0];
}
ALWAYS_INLINE FloatPoint through_0() const
{
VERIFY(m_command == Command::CubicBezierCurveTo);
return m_points[0];
}
ALWAYS_INLINE FloatPoint through_1() const
{
VERIFY(m_command == Command::CubicBezierCurveTo);
return m_points[1];
}
ALWAYS_INLINE ReadonlySpan<FloatPoint> points() const { return m_points; }
static constexpr int points_per_command(Command command)
{
switch (command) {
case Command::MoveTo:
case Command::LineTo:
return 1; // Single point.
case Command::QuadraticBezierCurveTo:
return 2; // Control point + point.
case Command::CubicBezierCurveTo:
return 3; // Two control points + point.
}
VERIFY_NOT_REACHED();
}
DeprecatedPathSegment(Command command, ReadonlySpan<FloatPoint> points)
: m_command(command)
, m_points(points) {};
private:
Command m_command;
ReadonlySpan<FloatPoint> m_points;
};
class PathSegmentIterator {
public:
int operator<=>(PathSegmentIterator other) const
{
if (m_command_index > other.m_command_index)
return 1;
if (m_command_index < other.m_command_index)
return -1;
return 0;
}
bool operator==(PathSegmentIterator other) const { return m_command_index == other.m_command_index; }
bool operator!=(PathSegmentIterator other) const { return m_command_index != other.m_command_index; }
PathSegmentIterator operator++()
{
if (m_command_index < m_commands.size())
m_point_index += DeprecatedPathSegment::points_per_command(m_commands[m_command_index++]);
return *this;
}
PathSegmentIterator operator++(int)
{
PathSegmentIterator old(*this);
++*this;
return old;
}
PathSegmentIterator operator--()
{
if (m_command_index > 0)
m_point_index -= DeprecatedPathSegment::points_per_command(m_commands[--m_command_index]);
return *this;
}
PathSegmentIterator operator--(int)
{
PathSegmentIterator old(*this);
--*this;
return old;
}
DeprecatedPathSegment operator*() const
{
auto command = m_commands[m_command_index];
return DeprecatedPathSegment { command, m_points.span().slice(m_point_index, DeprecatedPathSegment::points_per_command(command)) };
}
PathSegmentIterator& operator=(PathSegmentIterator const& other)
{
m_point_index = other.m_point_index;
m_command_index = other.m_command_index;
return *this;
}
PathSegmentIterator(PathSegmentIterator const&) = default;
friend DeprecatedPath;
private:
PathSegmentIterator(Vector<FloatPoint> const& points, Vector<DeprecatedPathSegment::Command> const& commands, size_t point_index = 0, size_t command_index = 0)
: m_points(points)
, m_commands(commands)
, m_point_index(point_index)
, m_command_index(command_index)
{
}
// Note: Store reference to vectors from Gfx::DeprecatedPath so appending segments does not invalidate iterators.
Vector<FloatPoint> const& m_points;
Vector<DeprecatedPathSegment::Command> const& m_commands;
size_t m_point_index { 0 };
size_t m_command_index { 0 };
};
class DeprecatedPath {
public:
DeprecatedPath() = default;
void move_to(FloatPoint point)
{
append_segment<DeprecatedPathSegment::MoveTo>(point);
}
void line_to(FloatPoint point)
{
append_segment<DeprecatedPathSegment::LineTo>(point);
invalidate_split_lines();
}
void quadratic_bezier_curve_to(FloatPoint through, FloatPoint point)
{
append_segment<DeprecatedPathSegment::QuadraticBezierCurveTo>(through, point);
invalidate_split_lines();
}
void cubic_bezier_curve_to(FloatPoint c1, FloatPoint c2, FloatPoint p2)
{
append_segment<DeprecatedPathSegment::CubicBezierCurveTo>(c1, c2, p2);
invalidate_split_lines();
}
void elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep);
void arc_to(FloatPoint point, float radius, bool large_arc, bool sweep)
{
elliptical_arc_to(point, { radius, radius }, 0, large_arc, sweep);
}
FloatPoint last_point()
{
if (!m_points.is_empty())
return m_points.last();
return {};
}
void close();
void close_all_subpaths();
DeprecatedPath stroke_to_fill(float thickness) const;
DeprecatedPath copy_transformed(AffineTransform const&) const;
ReadonlySpan<FloatLine> split_lines() const
{
if (!m_split_lines.has_value()) {
const_cast<DeprecatedPath*>(this)->segmentize_path();
VERIFY(m_split_lines.has_value());
}
return m_split_lines->lines;
}
Gfx::FloatRect const& bounding_box() const
{
(void)split_lines();
return m_split_lines->bounding_box;
}
ByteString to_byte_string() const;
PathSegmentIterator begin() const
{
return PathSegmentIterator(m_points, m_commands);
}
PathSegmentIterator end() const
{
return PathSegmentIterator(m_points, m_commands, m_points.size(), m_commands.size());
}
bool is_empty() const
{
return m_commands.is_empty();
}
void clear()
{
*this = DeprecatedPath {};
}
private:
void approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta);
void invalidate_split_lines()
{
m_split_lines.clear();
}
void segmentize_path();
template<DeprecatedPathSegment::Command command, typename... Args>
void append_segment(Args&&... args)
{
constexpr auto point_count = sizeof...(Args);
static_assert(point_count == DeprecatedPathSegment::points_per_command(command));
FloatPoint points[] { args... };
// Note: This should maintain the invariant that `m_points.last()` is always the last point in the path.
m_points.append(points, point_count);
m_commands.append(command);
}
Vector<FloatPoint> m_points {};
Vector<DeprecatedPathSegment::Command> m_commands {};
struct SplitLines {
Vector<FloatLine> lines;
Gfx::FloatRect bounding_box;
};
Optional<SplitLines> m_split_lines {};
};
}

View file

@ -7,7 +7,6 @@
#pragma once
#include <AK/RefCounted.h>
#include <LibGfx/DeprecatedPath.h>
#include <LibWeb/Bindings/PlatformObject.h>
#include <LibWeb/Geometry/DOMMatrixReadOnly.h>
#include <LibWeb/HTML/Canvas/CanvasPath.h>

View file

@ -6,7 +6,6 @@
#pragma once
#include <LibGfx/DeprecatedPath.h>
#include <LibWeb/Forward.h>
#include <LibWeb/Layout/FormattingContext.h>
#include <LibWeb/Layout/SVGImageBox.h>

View file

@ -7,7 +7,6 @@
#pragma once
#include <LibGfx/DeprecatedPath.h>
#include <LibGfx/PaintStyle.h>
#include <LibWeb/DOM/Node.h>
#include <LibWeb/SVG/AttributeParser.h>

View file

@ -6,7 +6,6 @@
#include <AK/Debug.h>
#include <AK/Optional.h>
#include <LibGfx/DeprecatedPath.h>
#include <LibGfx/Path.h>
#include <LibWeb/Bindings/SVGPathElementPrototype.h>
#include <LibWeb/DOM/Document.h>

View file

@ -7,7 +7,6 @@
#pragma once
#include <AK/FlyString.h>
#include <LibGfx/DeprecatedPath.h>
#include <LibWeb/DOM/DocumentObserver.h>
#include <LibWeb/SVG/SVGAnimatedLength.h>
#include <LibWeb/SVG/SVGGraphicsElement.h>

View file

@ -30,7 +30,6 @@ shared_library("LibGfx") {
"CMYKBitmap.cpp",
"Color.cpp",
"DeltaE.cpp",
"DeprecatedPath.cpp",
"Font/Font.cpp",
"Font/FontData.cpp",
"Font/FontDatabase.cpp",