|
@@ -4,17 +4,59 @@
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
*/
|
|
|
|
|
|
|
|
+#include <AK/QuickSort.h>
|
|
#include <LibCrypto/Hash/HashManager.h>
|
|
#include <LibCrypto/Hash/HashManager.h>
|
|
|
|
+#include <LibCrypto/PK/RSA.h>
|
|
#include <LibJS/Runtime/ArrayBuffer.h>
|
|
#include <LibJS/Runtime/ArrayBuffer.h>
|
|
#include <LibJS/Runtime/DataView.h>
|
|
#include <LibJS/Runtime/DataView.h>
|
|
#include <LibJS/Runtime/TypedArray.h>
|
|
#include <LibJS/Runtime/TypedArray.h>
|
|
#include <LibWeb/Crypto/CryptoAlgorithms.h>
|
|
#include <LibWeb/Crypto/CryptoAlgorithms.h>
|
|
|
|
+#include <LibWeb/Crypto/KeyAlgorithms.h>
|
|
|
|
|
|
namespace Web::Crypto {
|
|
namespace Web::Crypto {
|
|
|
|
|
|
|
|
+// https://w3c.github.io/webcrypto/#concept-usage-intersection
|
|
|
|
+static Vector<Bindings::KeyUsage> usage_intersection(ReadonlySpan<Bindings::KeyUsage> a, ReadonlySpan<Bindings::KeyUsage> b)
|
|
|
|
+{
|
|
|
|
+ Vector<Bindings::KeyUsage> result;
|
|
|
|
+ for (auto const& usage : a) {
|
|
|
|
+ if (b.contains_slow(usage))
|
|
|
|
+ result.append(usage);
|
|
|
|
+ }
|
|
|
|
+ quick_sort(result);
|
|
|
|
+ return result;
|
|
|
|
+}
|
|
|
|
+
|
|
// Out of line to ensure this class has a key function
|
|
// Out of line to ensure this class has a key function
|
|
AlgorithmMethods::~AlgorithmMethods() = default;
|
|
AlgorithmMethods::~AlgorithmMethods() = default;
|
|
|
|
|
|
|
|
+// https://w3c.github.io/webcrypto/#big-integer
|
|
|
|
+static ::Crypto::UnsignedBigInteger big_integer_from_api_big_integer(JS::GCPtr<JS::Uint8Array> const& big_integer)
|
|
|
|
+{
|
|
|
|
+ static_assert(AK::HostIsLittleEndian, "This method needs special treatment for BE");
|
|
|
|
+
|
|
|
|
+ // The BigInteger typedef is a Uint8Array that holds an arbitrary magnitude unsigned integer
|
|
|
|
+ // **in big-endian order**. Values read from the API SHALL have minimal typed array length
|
|
|
|
+ // (that is, at most 7 leading zero bits, except the value 0 which shall have length 8 bits).
|
|
|
|
+ // The API SHALL accept values with any number of leading zero bits, including the empty array, which represents zero.
|
|
|
|
+
|
|
|
|
+ auto const& buffer = big_integer->viewed_array_buffer()->buffer();
|
|
|
|
+
|
|
|
|
+ ::Crypto::UnsignedBigInteger result(0);
|
|
|
|
+ if (buffer.size() > 0) {
|
|
|
|
+
|
|
|
|
+ // We need to reverse the buffer to get it into little-endian order
|
|
|
|
+ Vector<u8, 32> reversed_buffer;
|
|
|
|
+ reversed_buffer.resize(buffer.size());
|
|
|
|
+ for (size_t i = 0; i < buffer.size(); ++i) {
|
|
|
|
+ reversed_buffer[buffer.size() - i - 1] = buffer[i];
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ result = ::Crypto::UnsignedBigInteger::import_data(reversed_buffer.data(), reversed_buffer.size());
|
|
|
|
+ }
|
|
|
|
+ return result;
|
|
|
|
+}
|
|
|
|
+
|
|
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AlgorithmParams::from_value(JS::VM& vm, JS::Value value)
|
|
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AlgorithmParams::from_value(JS::VM& vm, JS::Value value)
|
|
{
|
|
{
|
|
auto& object = value.as_object();
|
|
auto& object = value.as_object();
|
|
@@ -57,6 +99,126 @@ JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> PBKDF2Params::from_value(J
|
|
return adopt_own<AlgorithmParams>(*new PBKDF2Params { { name }, salt, iterations, hash.downcast<HashAlgorithmIdentifier>() });
|
|
return adopt_own<AlgorithmParams>(*new PBKDF2Params { { name }, salt, iterations, hash.downcast<HashAlgorithmIdentifier>() });
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaKeyGenParams::from_value(JS::VM& vm, JS::Value value)
|
|
|
|
+{
|
|
|
|
+ auto& object = value.as_object();
|
|
|
|
+
|
|
|
|
+ auto name_value = TRY(object.get("name"));
|
|
|
|
+ auto name = TRY(name_value.to_string(vm));
|
|
|
|
+
|
|
|
|
+ auto modulus_length_value = TRY(object.get("modulusLength"));
|
|
|
|
+ auto modulus_length = TRY(modulus_length_value.to_u32(vm));
|
|
|
|
+
|
|
|
|
+ auto public_exponent_value = TRY(object.get("publicExponent"));
|
|
|
|
+ JS::GCPtr<JS::Uint8Array> public_exponent;
|
|
|
|
+
|
|
|
|
+ if (!public_exponent_value.is_object() || !is<JS::Uint8Array>(public_exponent_value.as_object()))
|
|
|
|
+ return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "Uint8Array");
|
|
|
|
+
|
|
|
|
+ public_exponent = static_cast<JS::Uint8Array&>(public_exponent_value.as_object());
|
|
|
|
+
|
|
|
|
+ return adopt_own<AlgorithmParams>(*new RsaKeyGenParams { { name }, modulus_length, big_integer_from_api_big_integer(public_exponent) });
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaHashedKeyGenParams::from_value(JS::VM& vm, JS::Value value)
|
|
|
|
+{
|
|
|
|
+ auto& object = value.as_object();
|
|
|
|
+
|
|
|
|
+ auto name_value = TRY(object.get("name"));
|
|
|
|
+ auto name = TRY(name_value.to_string(vm));
|
|
|
|
+
|
|
|
|
+ auto modulus_length_value = TRY(object.get("modulusLength"));
|
|
|
|
+ auto modulus_length = TRY(modulus_length_value.to_u32(vm));
|
|
|
|
+
|
|
|
|
+ auto public_exponent_value = TRY(object.get("publicExponent"));
|
|
|
|
+ JS::GCPtr<JS::Uint8Array> public_exponent;
|
|
|
|
+
|
|
|
|
+ if (!public_exponent_value.is_object() || !is<JS::Uint8Array>(public_exponent_value.as_object()))
|
|
|
|
+ return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "Uint8Array");
|
|
|
|
+
|
|
|
|
+ public_exponent = static_cast<JS::Uint8Array&>(public_exponent_value.as_object());
|
|
|
|
+
|
|
|
|
+ auto hash_value = TRY(object.get("hash"));
|
|
|
|
+ auto hash = Variant<Empty, HashAlgorithmIdentifier> { Empty {} };
|
|
|
|
+ if (hash_value.is_string()) {
|
|
|
|
+ auto hash_string = TRY(hash_value.to_string(vm));
|
|
|
|
+ hash = HashAlgorithmIdentifier { hash_string };
|
|
|
|
+ } else {
|
|
|
|
+ auto hash_object = TRY(hash_value.to_object(vm));
|
|
|
|
+ hash = HashAlgorithmIdentifier { hash_object };
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return adopt_own<AlgorithmParams>(*new RsaHashedKeyGenParams { { { name }, modulus_length, big_integer_from_api_big_integer(public_exponent) }, hash.get<HashAlgorithmIdentifier>() });
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://w3c.github.io/webcrypto/#rsa-oaep-operations
|
|
|
|
+WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> RSAOAEP::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
|
|
|
|
+{
|
|
|
|
+ // 1. If usages contains an entry which is not "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
|
|
|
|
+ for (auto const& usage : key_usages) {
|
|
|
|
+ if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
|
|
|
|
+ return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // 2. Generate an RSA key pair, as defined in [RFC3447], with RSA modulus length equal to the modulusLength member of normalizedAlgorithm
|
|
|
|
+ // and RSA public exponent equal to the publicExponent member of normalizedAlgorithm.
|
|
|
|
+ // 3. If performing the operation results in an error, then throw an OperationError.
|
|
|
|
+ auto const& normalized_algorithm = static_cast<RsaHashedKeyGenParams const&>(params);
|
|
|
|
+ auto key_pair = ::Crypto::PK::RSA::generate_key_pair(normalized_algorithm.modulus_length, normalized_algorithm.public_exponent);
|
|
|
|
+
|
|
|
|
+ // 4. Let algorithm be a new RsaHashedKeyAlgorithm object.
|
|
|
|
+ auto algorithm = RsaHashedKeyAlgorithm::create(m_realm);
|
|
|
|
+
|
|
|
|
+ // 5. Set the name attribute of algorithm to "RSA-OAEP".
|
|
|
|
+ algorithm->set_name("RSA-OAEP"_string);
|
|
|
|
+
|
|
|
|
+ // 6. Set the modulusLength attribute of algorithm to equal the modulusLength member of normalizedAlgorithm.
|
|
|
|
+ algorithm->set_modulus_length(normalized_algorithm.modulus_length);
|
|
|
|
+
|
|
|
|
+ // 7. Set the publicExponent attribute of algorithm to equal the publicExponent member of normalizedAlgorithm.
|
|
|
|
+ TRY(algorithm->set_public_exponent(normalized_algorithm.public_exponent));
|
|
|
|
+
|
|
|
|
+ // 8. Set the hash attribute of algorithm to equal the hash member of normalizedAlgorithm.
|
|
|
|
+ algorithm->set_hash(normalized_algorithm.hash);
|
|
|
|
+
|
|
|
|
+ // 9. Let publicKey be a new CryptoKey representing the public key of the generated key pair.
|
|
|
|
+ auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.public_key });
|
|
|
|
+
|
|
|
|
+ // 10. Set the [[type]] internal slot of publicKey to "public"
|
|
|
|
+ public_key->set_type(Bindings::KeyType::Public);
|
|
|
|
+
|
|
|
|
+ // 11. Set the [[algorithm]] internal slot of publicKey to algorithm.
|
|
|
|
+ public_key->set_algorithm(algorithm);
|
|
|
|
+
|
|
|
|
+ // 12. Set the [[extractable]] internal slot of publicKey to true.
|
|
|
|
+ public_key->set_extractable(true);
|
|
|
|
+
|
|
|
|
+ // 13. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "encrypt", "wrapKey" ].
|
|
|
|
+ public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Encrypt, Bindings::KeyUsage::Wrapkey } }));
|
|
|
|
+
|
|
|
|
+ // 14. Let privateKey be a new CryptoKey representing the private key of the generated key pair.
|
|
|
|
+ auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.private_key });
|
|
|
|
+
|
|
|
|
+ // 15. Set the [[type]] internal slot of privateKey to "private"
|
|
|
|
+ private_key->set_type(Bindings::KeyType::Private);
|
|
|
|
+
|
|
|
|
+ // 16. Set the [[algorithm]] internal slot of privateKey to algorithm.
|
|
|
|
+ private_key->set_algorithm(algorithm);
|
|
|
|
+
|
|
|
|
+ // 17. Set the [[extractable]] internal slot of privateKey to extractable.
|
|
|
|
+ private_key->set_extractable(extractable);
|
|
|
|
+
|
|
|
|
+ // 18. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "decrypt", "unwrapKey" ].
|
|
|
|
+ private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Decrypt, Bindings::KeyUsage::Unwrapkey } }));
|
|
|
|
+
|
|
|
|
+ // 19. Let result be a new CryptoKeyPair dictionary.
|
|
|
|
+ // 20. Set the publicKey attribute of result to be publicKey.
|
|
|
|
+ // 21. Set the privateKey attribute of result to be privateKey.
|
|
|
|
+ // 22. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
|
|
|
|
+ return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
|
|
|
|
+}
|
|
|
|
+
|
|
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> PBKDF2::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
|
|
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> PBKDF2::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
|
|
{
|
|
{
|
|
// 1. If format is not "raw", throw a NotSupportedError
|
|
// 1. If format is not "raw", throw a NotSupportedError
|
|
@@ -85,7 +247,7 @@ WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> PBKDF2::import_key(AlgorithmPar
|
|
key->set_extractable(false);
|
|
key->set_extractable(false);
|
|
|
|
|
|
// 7. Let algorithm be a new KeyAlgorithm object.
|
|
// 7. Let algorithm be a new KeyAlgorithm object.
|
|
- auto algorithm = Bindings::KeyAlgorithm::create(m_realm);
|
|
|
|
|
|
+ auto algorithm = KeyAlgorithm::create(m_realm);
|
|
|
|
|
|
// 8. Set the name attribute of algorithm to "PBKDF2".
|
|
// 8. Set the name attribute of algorithm to "PBKDF2".
|
|
algorithm->set_name("PBKDF2"_string);
|
|
algorithm->set_name("PBKDF2"_string);
|