|
@@ -8,6 +8,7 @@
|
|
|
|
|
|
#include <AK/Array.h>
|
|
|
#include <AK/Function.h>
|
|
|
+#include <AK/StringFloatingPointConversions.h>
|
|
|
#include <AK/TypeCasts.h>
|
|
|
#include <LibJS/Runtime/AbstractOperations.h>
|
|
|
#include <LibJS/Runtime/Completion.h>
|
|
@@ -36,53 +37,6 @@ static constexpr AK::Array<char, 36> digits = {
|
|
|
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'
|
|
|
};
|
|
|
|
|
|
-static String decimal_digits_to_string(double number)
|
|
|
-{
|
|
|
- StringBuilder builder;
|
|
|
-
|
|
|
- double integral_part = 0;
|
|
|
- (void)modf(number, &integral_part);
|
|
|
-
|
|
|
- while (integral_part > 0) {
|
|
|
- auto index = static_cast<size_t>(fmod(integral_part, 10));
|
|
|
- builder.append(digits[index]);
|
|
|
-
|
|
|
- integral_part = floor(integral_part / 10.0);
|
|
|
- }
|
|
|
-
|
|
|
- return builder.build().reverse();
|
|
|
-}
|
|
|
-
|
|
|
-static size_t compute_fraction_digits(double number, int exponent)
|
|
|
-{
|
|
|
- double integral_part = 0;
|
|
|
- double fraction_part = modf(number, &integral_part);
|
|
|
-
|
|
|
- auto fraction = String::number(fraction_part);
|
|
|
- size_t fraction_digits = 0;
|
|
|
-
|
|
|
- if (integral_part != 0)
|
|
|
- fraction_digits = exponent;
|
|
|
-
|
|
|
- if (auto decimal_index = fraction.find('.'); decimal_index.has_value()) {
|
|
|
- fraction_digits += fraction.length() - *decimal_index - 1;
|
|
|
-
|
|
|
- if (integral_part == 0) {
|
|
|
- --fraction_digits;
|
|
|
-
|
|
|
- for (size_t i = *decimal_index + 1; (i < fraction.length()) && (fraction[i] == '0'); ++i)
|
|
|
- --fraction_digits;
|
|
|
- }
|
|
|
- } else if (integral_part != 0) {
|
|
|
- auto integral = decimal_digits_to_string(integral_part);
|
|
|
-
|
|
|
- for (size_t i = integral.length(); (i > 0) && (integral[i - 1] == '0'); --i)
|
|
|
- --fraction_digits;
|
|
|
- }
|
|
|
-
|
|
|
- return fraction_digits;
|
|
|
-}
|
|
|
-
|
|
|
NumberPrototype::NumberPrototype(Realm& realm)
|
|
|
: NumberObject(0, *realm.intrinsics().object_prototype())
|
|
|
{
|
|
@@ -170,10 +124,6 @@ JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_exponential)
|
|
|
}
|
|
|
// 10. Else,
|
|
|
else {
|
|
|
- // FIXME: The computations below fall apart for large values of 'f'. A double typically has 52 mantissa bits, which gives us
|
|
|
- // up to 2^52 before loss of precision. However, the largest value of 'f' may be 100, resulting in numbers on the order
|
|
|
- // of 10^100, thus we lose precision in these computations.
|
|
|
-
|
|
|
// a. If fractionDigits is not undefined, then
|
|
|
// i. Let e and n be integers such that 10^f ≤ n < 10^(f+1) and for which n × 10^(e-f) - x is as close to zero as possible.
|
|
|
// If there are two such sets of e and n, pick the e and n for which n × 10^(e-f) is larger.
|
|
@@ -182,13 +132,20 @@ JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_exponential)
|
|
|
// Note that the decimal representation of n has f + 1 digits, n is not divisible by 10, and the least significant digit of n is not necessarily uniquely determined by these criteria.
|
|
|
exponent = static_cast<int>(floor(log10(number)));
|
|
|
|
|
|
- if (fraction_digits_value.is_undefined())
|
|
|
- fraction_digits = compute_fraction_digits(number, exponent);
|
|
|
+ if (fraction_digits_value.is_undefined()) {
|
|
|
+ auto mantissa = convert_floating_point_to_decimal_exponential_form(number).fraction;
|
|
|
+
|
|
|
+ auto mantissa_length = 0;
|
|
|
+ for (; mantissa; mantissa /= 10)
|
|
|
+ ++mantissa_length;
|
|
|
+
|
|
|
+ fraction_digits = mantissa_length - 1;
|
|
|
+ }
|
|
|
|
|
|
number = round(number / pow(10, exponent - fraction_digits));
|
|
|
|
|
|
// c. Let m be the String value consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
|
|
|
- number_string = decimal_digits_to_string(number);
|
|
|
+ number_string = number_to_string(number, NumberToStringMode::WithoutExponent);
|
|
|
}
|
|
|
|
|
|
// 11. If f ≠ 0, then
|