|
@@ -1,121 +0,0 @@
|
|
|
-/*
|
|
|
- * Copyright (c) 2020, the SerenityOS developers.
|
|
|
- *
|
|
|
- * SPDX-License-Identifier: BSD-2-Clause
|
|
|
- */
|
|
|
-
|
|
|
-#pragma once
|
|
|
-
|
|
|
-#include "Color.h"
|
|
|
-#include <AK/Math.h>
|
|
|
-
|
|
|
-#ifdef __SSE__
|
|
|
-# include <xmmintrin.h>
|
|
|
-#endif
|
|
|
-
|
|
|
-#include <AK/SIMD.h>
|
|
|
-#include <AK/SIMDMath.h>
|
|
|
-
|
|
|
-#define GAMMA 2.2
|
|
|
-
|
|
|
-// Most computer graphics are stored in the sRGB color space, which stores something close to
|
|
|
-// the square root of the display intensity of each color channel. This is problematic for most
|
|
|
-// operations that we want to perform on colors, since they typically assume that color scales
|
|
|
-// linearly (e.g. rgb(127, 0, 0) is half as bright as rgb(255, 0, 0)). This causes incorrect
|
|
|
-// results that look more gray than they should, to fix this we have to convert colors to the linear
|
|
|
-// color space before performing these operations, then convert back before displaying.
|
|
|
-//
|
|
|
-// Conversion between linear and sRGB spaces are somewhat expensive to do on the CPU, so we instead
|
|
|
-// interpret sRGB colors as gamma2.2 colors, which are close enough in most cases to be indistinguishable.
|
|
|
-// Gamma 2.2 colors follow the simple rule of `display_intensity = pow(stored_intensity, 2.2)`.
|
|
|
-// This module implements some fast color space transforms between the gamma2.2 and linear color spaces, plus
|
|
|
-// some common primitive operations like blending.
|
|
|
-//
|
|
|
-// For a more in-depth overview of how gamma-adjustment works, check out:
|
|
|
-// https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
|
|
|
-
|
|
|
-namespace Gfx {
|
|
|
-
|
|
|
-using AK::SIMD::f32x4;
|
|
|
-
|
|
|
-#ifdef __SSE__
|
|
|
-
|
|
|
-// Transform f32x4 from gamma2.2 space to linear space
|
|
|
-// Assumes x is in range [0, 1]
|
|
|
-constexpr f32x4 gamma_to_linear4(f32x4 x)
|
|
|
-{
|
|
|
- return (0.8f + 0.2f * x) * x * x;
|
|
|
-}
|
|
|
-
|
|
|
-// Transform f32x4 from linear space to gamma2.2 space
|
|
|
-// Assumes x is in range [0, 1]
|
|
|
-inline f32x4 linear_to_gamma4(f32x4 x)
|
|
|
-{
|
|
|
- // Source for approximation: https://mimosa-pudica.net/fast-gamma/
|
|
|
- constexpr float a = 0.00279491f;
|
|
|
- constexpr float b = 1.15907984f;
|
|
|
- float c = (b * AK::rsqrt(1.0f + a)) - 1;
|
|
|
- return ((b * AK::SIMD::rsqrt(x + a)) - c) * x;
|
|
|
-}
|
|
|
-
|
|
|
-// Linearize v1 and v2, lerp them by mix factor, then convert back.
|
|
|
-// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
|
|
|
-inline f32x4 gamma_accurate_lerp4(f32x4 v1, f32x4 v2, float mix)
|
|
|
-{
|
|
|
- return linear_to_gamma4(gamma_to_linear4(v1) * (1 - mix) + gamma_to_linear4(v2) * mix);
|
|
|
-}
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-// Transform scalar from gamma2.2 space to linear space
|
|
|
-// Assumes x is in range [0, 1]
|
|
|
-constexpr float gamma_to_linear(float x)
|
|
|
-{
|
|
|
- return (0.8f + 0.2f * x) * x * x;
|
|
|
-}
|
|
|
-
|
|
|
-// Transform scalar from linear space to gamma2.2 space
|
|
|
-// Assumes x is in range [0, 1]
|
|
|
-inline float linear_to_gamma(float x)
|
|
|
-{
|
|
|
- // Source for approximation: https://mimosa-pudica.net/fast-gamma/
|
|
|
- constexpr float a = 0.00279491;
|
|
|
- constexpr float b = 1.15907984;
|
|
|
- float c = (b * AK::rsqrt(1 + a)) - 1;
|
|
|
- return ((b * AK::rsqrt(x + a)) - c) * x;
|
|
|
-}
|
|
|
-
|
|
|
-// Linearize v1 and v2, lerp them by mix factor, then convert back.
|
|
|
-// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
|
|
|
-inline float gamma_accurate_lerp(float v1, float v2, float mix)
|
|
|
-{
|
|
|
- return linear_to_gamma(gamma_to_linear(v1) * (1 - mix) + gamma_to_linear(v2) * mix);
|
|
|
-}
|
|
|
-
|
|
|
-// Convert a and b to linear space, blend them by mix factor, then convert back.
|
|
|
-// The output is entirely a when mix = 0 and entirely b when mix = 1
|
|
|
-inline Color gamma_accurate_blend(Color a, Color b, float mix)
|
|
|
-{
|
|
|
-#ifdef __SSE__
|
|
|
- f32x4 ac = {
|
|
|
- (float)a.red(),
|
|
|
- (float)a.green(),
|
|
|
- (float)a.blue(),
|
|
|
- };
|
|
|
- f32x4 bc = {
|
|
|
- (float)b.red(),
|
|
|
- (float)b.green(),
|
|
|
- (float)b.blue(),
|
|
|
- };
|
|
|
- f32x4 out = 255.f * gamma_accurate_lerp4(ac * (1.f / 255.f), bc * (1.f / 255.f), mix);
|
|
|
- return Color(out[0], out[1], out[2]);
|
|
|
-#else
|
|
|
- return {
|
|
|
- static_cast<u8>(255.f * gamma_accurate_lerp(a.red() / 255.f, b.red() / 255.f, mix)),
|
|
|
- static_cast<u8>(255.f * gamma_accurate_lerp(a.green() / 255.f, b.green() / 255.f, mix)),
|
|
|
- static_cast<u8>(255.f * gamma_accurate_lerp(a.blue() / 255.f, b.blue() / 255.f, mix)),
|
|
|
- };
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-}
|