|
@@ -0,0 +1,172 @@
|
|
|
|
+/*
|
|
|
|
+ * Copyright (c) 2023, Ali Mohammad Pur <mpfard@serenityos.org>
|
|
|
|
+ * Copyright (c) 2023, Matthew Olsson <mattco@serenityos.org>
|
|
|
|
+ *
|
|
|
|
+ * SPDX-License-Identifier: BSD-2-Clause
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#include <AK/BinarySearch.h>
|
|
|
|
+#include <LibWeb/Animations/TimingFunction.h>
|
|
|
|
+#include <math.h>
|
|
|
|
+
|
|
|
|
+namespace Web::Animations {
|
|
|
|
+
|
|
|
|
+// https://www.w3.org/TR/css-easing-1/#linear-easing-function
|
|
|
|
+double LinearTimingFunction::operator()(double input_progress, bool) const
|
|
|
|
+{
|
|
|
|
+ return input_progress;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static double cubic_bezier_at(double x1, double x2, double t)
|
|
|
|
+{
|
|
|
|
+ auto a = 1.0 - 3.0 * x2 + 3.0 * x1;
|
|
|
|
+ auto b = 3.0 * x2 - 6.0 * x1;
|
|
|
|
+ auto c = 3.0 * x1;
|
|
|
|
+
|
|
|
|
+ auto t2 = t * t;
|
|
|
|
+ auto t3 = t2 * t;
|
|
|
|
+
|
|
|
|
+ return (a * t3) + (b * t2) + (c * t);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://www.w3.org/TR/css-easing-1/#cubic-bezier-algo
|
|
|
|
+double CubicBezierTimingFunction::operator()(double input_progress, bool) const
|
|
|
|
+{
|
|
|
|
+ // For input progress values outside the range [0, 1], the curve is extended infinitely using tangent of the curve
|
|
|
|
+ // at the closest endpoint as follows:
|
|
|
|
+
|
|
|
|
+ // - For input progress values less than zero,
|
|
|
|
+ if (input_progress < 0.0) {
|
|
|
|
+ // 1. If the x value of P1 is greater than zero, use a straight line that passes through P1 and P0 as the
|
|
|
|
+ // tangent.
|
|
|
|
+ if (x1 > 0.0)
|
|
|
|
+ return y1 / x1 * input_progress;
|
|
|
|
+
|
|
|
|
+ // 2. Otherwise, if the x value of P2 is greater than zero, use a straight line that passes through P2 and P0 as
|
|
|
|
+ // the tangent.
|
|
|
|
+ if (x2 > 0.0)
|
|
|
|
+ return y2 / x2 * input_progress;
|
|
|
|
+
|
|
|
|
+ // 3. Otherwise, let the output progress value be zero for all input progress values in the range [-∞, 0).
|
|
|
|
+ return 0.0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // - For input progress values greater than one,
|
|
|
|
+ if (input_progress > 1.0) {
|
|
|
|
+ // 1. If the x value of P2 is less than one, use a straight line that passes through P2 and P3 as the tangent.
|
|
|
|
+ if (x2 < 1.0)
|
|
|
|
+ return (1.0 - y2) / (1.0 - x2) * (input_progress - 1.0) + 1.0;
|
|
|
|
+
|
|
|
|
+ // 2. Otherwise, if the x value of P1 is less than one, use a straight line that passes through P1 and P3 as the
|
|
|
|
+ // tangent.
|
|
|
|
+ if (x1 < 1.0)
|
|
|
|
+ return (1.0 - y1) / (1.0 - x1) * (input_progress - 1.0) + 1.0;
|
|
|
|
+
|
|
|
|
+ // 3. Otherwise, let the output progress value be one for all input progress values in the range (1, ∞].
|
|
|
|
+ return 1.0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Note: The spec does not specify the precise algorithm for calculating values in the range [0, 1]:
|
|
|
|
+ // "The evaluation of this curve is covered in many sources such as [FUND-COMP-GRAPHICS]."
|
|
|
|
+
|
|
|
|
+ auto x = input_progress;
|
|
|
|
+
|
|
|
|
+ auto solve = [&](auto t) {
|
|
|
|
+ auto x = cubic_bezier_at(x1, x2, t);
|
|
|
|
+ auto y = cubic_bezier_at(y1, y2, t);
|
|
|
|
+ return CachedSample { x, y, t };
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ if (m_cached_x_samples.is_empty())
|
|
|
|
+ m_cached_x_samples.append(solve(0.));
|
|
|
|
+
|
|
|
|
+ size_t nearby_index = 0;
|
|
|
|
+ if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) {
|
|
|
|
+ if (x > sample.x)
|
|
|
|
+ return 1;
|
|
|
|
+ if (x < sample.x)
|
|
|
|
+ return -1;
|
|
|
|
+ return 0;
|
|
|
|
+ }))
|
|
|
|
+ return found->y;
|
|
|
|
+
|
|
|
|
+ if (nearby_index == m_cached_x_samples.size() || nearby_index + 1 == m_cached_x_samples.size()) {
|
|
|
|
+ // Produce more samples until we have enough.
|
|
|
|
+ auto last_t = m_cached_x_samples.is_empty() ? 0 : m_cached_x_samples.last().t;
|
|
|
|
+ auto last_x = m_cached_x_samples.is_empty() ? 0 : m_cached_x_samples.last().x;
|
|
|
|
+ while (last_x <= x) {
|
|
|
|
+ last_t += 1. / 60.;
|
|
|
|
+ auto solution = solve(last_t);
|
|
|
|
+ m_cached_x_samples.append(solution);
|
|
|
|
+ last_x = solution.x;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) {
|
|
|
|
+ if (x > sample.x)
|
|
|
|
+ return 1;
|
|
|
|
+ if (x < sample.x)
|
|
|
|
+ return -1;
|
|
|
|
+ return 0;
|
|
|
|
+ }))
|
|
|
|
+ return found->y;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // We have two samples on either side of the x value we want, so we can linearly interpolate between them.
|
|
|
|
+ auto& sample1 = m_cached_x_samples[nearby_index];
|
|
|
|
+ auto& sample2 = m_cached_x_samples[nearby_index + 1];
|
|
|
|
+ auto factor = (x - sample1.x) / (sample2.x - sample1.x);
|
|
|
|
+ return clamp(sample1.y + factor * (sample2.y - sample1.y), 0, 1);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://www.w3.org/TR/css-easing-1/#step-easing-algo
|
|
|
|
+double StepsTimingFunction::operator()(double input_progress, bool before_flag) const
|
|
|
|
+{
|
|
|
|
+ // 1. Calculate the current step as floor(input progress value × steps).
|
|
|
|
+ auto current_step = floor(input_progress * number_of_steps);
|
|
|
|
+
|
|
|
|
+ // 2. If the step position property is one of:
|
|
|
|
+ // - jump-start,
|
|
|
|
+ // - jump-both,
|
|
|
|
+ // increment current step by one.
|
|
|
|
+ if (jump_at_start)
|
|
|
|
+ current_step += 1;
|
|
|
|
+
|
|
|
|
+ // 3. If both of the following conditions are true:
|
|
|
|
+ // - the before flag is set, and
|
|
|
|
+ // - input progress value × steps mod 1 equals zero (that is, if input progress value × steps is integral), then
|
|
|
|
+ // decrement current step by one.
|
|
|
|
+ auto step_progress = input_progress * number_of_steps;
|
|
|
|
+ if (before_flag && trunc(step_progress) == step_progress)
|
|
|
|
+ current_step -= 1;
|
|
|
|
+
|
|
|
|
+ // 4. If input progress value ≥ 0 and current step < 0, let current step be zero.
|
|
|
|
+ if (input_progress >= 0.0 && current_step < 0.0)
|
|
|
|
+ current_step = 0.0;
|
|
|
|
+
|
|
|
|
+ // 5. Calculate jumps based on the step position as follows:
|
|
|
|
+
|
|
|
|
+ // jump-start or jump-end -> steps
|
|
|
|
+ // jump-none -> steps - 1
|
|
|
|
+ // jump-both -> steps + 1
|
|
|
|
+ double jumps;
|
|
|
|
+ if (jump_at_start ^ jump_at_end)
|
|
|
|
+ jumps = number_of_steps;
|
|
|
|
+ else if (jump_at_start && jump_at_end)
|
|
|
|
+ jumps = number_of_steps + 1;
|
|
|
|
+ else
|
|
|
|
+ jumps = number_of_steps - 1;
|
|
|
|
+
|
|
|
|
+ // 6. If input progress value ≤ 1 and current step > jumps, let current step be jumps.
|
|
|
|
+ if (input_progress <= 1.0 && current_step > jumps)
|
|
|
|
+ current_step = jumps;
|
|
|
|
+
|
|
|
|
+ // 7. The output progress value is current step / jumps.
|
|
|
|
+ return current_step / jumps;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+double TimingFunction::operator()(double input_progress, bool before_flag) const
|
|
|
|
+{
|
|
|
|
+ return function.visit([&](auto const& f) { return f(input_progress, before_flag); });
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+}
|