|
@@ -6,6 +6,7 @@
|
|
|
|
|
|
#include "UnsignedBigInteger.h"
|
|
|
#include <AK/StringBuilder.h>
|
|
|
+#include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
|
|
|
|
|
|
namespace Crypto {
|
|
|
|
|
@@ -85,7 +86,7 @@ String UnsignedBigInteger::to_base10() const
|
|
|
UnsignedBigInteger remainder;
|
|
|
|
|
|
while (temp != UnsignedBigInteger { 0 }) {
|
|
|
- divide_u16_without_allocation(temp, 10, quotient, remainder);
|
|
|
+ UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(temp, 10, quotient, remainder);
|
|
|
VERIFY(remainder.words()[0] < 10);
|
|
|
builder.append(static_cast<char>(remainder.words()[0] + '0'));
|
|
|
temp.set_to(quotient);
|
|
@@ -147,7 +148,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::plus(const UnsignedBigInteger& ot
|
|
|
{
|
|
|
UnsignedBigInteger result;
|
|
|
|
|
|
- add_without_allocation(*this, other, result);
|
|
|
+ UnsignedBigIntegerAlgorithms::add_without_allocation(*this, other, result);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -156,7 +157,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::minus(const UnsignedBigInteger& o
|
|
|
{
|
|
|
UnsignedBigInteger result;
|
|
|
|
|
|
- subtract_without_allocation(*this, other, result);
|
|
|
+ UnsignedBigIntegerAlgorithms::subtract_without_allocation(*this, other, result);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -165,7 +166,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_or(const UnsignedBigInteg
|
|
|
{
|
|
|
UnsignedBigInteger result;
|
|
|
|
|
|
- bitwise_or_without_allocation(*this, other, result);
|
|
|
+ UnsignedBigIntegerAlgorithms::bitwise_or_without_allocation(*this, other, result);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -174,7 +175,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_and(const UnsignedBigInte
|
|
|
{
|
|
|
UnsignedBigInteger result;
|
|
|
|
|
|
- bitwise_and_without_allocation(*this, other, result);
|
|
|
+ UnsignedBigIntegerAlgorithms::bitwise_and_without_allocation(*this, other, result);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -183,7 +184,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_xor(const UnsignedBigInte
|
|
|
{
|
|
|
UnsignedBigInteger result;
|
|
|
|
|
|
- bitwise_xor_without_allocation(*this, other, result);
|
|
|
+ UnsignedBigIntegerAlgorithms::bitwise_xor_without_allocation(*this, other, result);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -192,7 +193,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_not() const
|
|
|
{
|
|
|
UnsignedBigInteger result;
|
|
|
|
|
|
- bitwise_not_without_allocation(*this, result);
|
|
|
+ UnsignedBigIntegerAlgorithms::bitwise_not_without_allocation(*this, result);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -203,7 +204,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const
|
|
|
UnsignedBigInteger temp_result;
|
|
|
UnsignedBigInteger temp_plus;
|
|
|
|
|
|
- shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output);
|
|
|
+ UnsignedBigIntegerAlgorithms::shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output);
|
|
|
|
|
|
return output;
|
|
|
}
|
|
@@ -216,7 +217,7 @@ FLATTEN UnsignedBigInteger UnsignedBigInteger::multiplied_by(const UnsignedBigIn
|
|
|
UnsignedBigInteger temp_shift;
|
|
|
UnsignedBigInteger temp_plus;
|
|
|
|
|
|
- multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, temp_plus, result);
|
|
|
+ UnsignedBigIntegerAlgorithms::multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, temp_plus, result);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -229,7 +230,7 @@ FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(const UnsignedBigI
|
|
|
// If we actually have a u16-compatible divisor, short-circuit to the
|
|
|
// less computationally-intensive "divide_u16_without_allocation" method.
|
|
|
if (divisor.trimmed_length() == 1 && divisor.m_words[0] < (1 << 16)) {
|
|
|
- divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder);
|
|
|
+ UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder);
|
|
|
return UnsignedDivisionResult { quotient, remainder };
|
|
|
}
|
|
|
|
|
@@ -238,7 +239,7 @@ FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(const UnsignedBigI
|
|
|
UnsignedBigInteger temp_shift;
|
|
|
UnsignedBigInteger temp_minus;
|
|
|
|
|
|
- divide_without_allocation(*this, divisor, temp_shift_result, temp_shift_plus, temp_shift, temp_minus, quotient, remainder);
|
|
|
+ UnsignedBigIntegerAlgorithms::divide_without_allocation(*this, divisor, temp_shift_result, temp_shift_plus, temp_shift, temp_minus, quotient, remainder);
|
|
|
|
|
|
return UnsignedDivisionResult { quotient, remainder };
|
|
|
}
|
|
@@ -300,423 +301,6 @@ bool UnsignedBigInteger::operator<(const UnsignedBigInteger& other) const
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
-/**
|
|
|
- * Complexity: O(N) where N is the number of words in the larger number
|
|
|
- */
|
|
|
-void UnsignedBigInteger::add_without_allocation(
|
|
|
- const UnsignedBigInteger& left,
|
|
|
- const UnsignedBigInteger& right,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- const UnsignedBigInteger* const longer = (left.length() > right.length()) ? &left : &right;
|
|
|
- const UnsignedBigInteger* const shorter = (longer == &right) ? &left : &right;
|
|
|
-
|
|
|
- u8 carry = 0;
|
|
|
-
|
|
|
- output.set_to_0();
|
|
|
- output.m_words.resize_and_keep_capacity(longer->length());
|
|
|
-
|
|
|
- for (size_t i = 0; i < shorter->length(); ++i) {
|
|
|
- u32 word_addition_result = shorter->m_words[i] + longer->m_words[i];
|
|
|
- u8 carry_out = 0;
|
|
|
- // if there was a carry, the result will be smaller than any of the operands
|
|
|
- if (word_addition_result + carry < shorter->m_words[i]) {
|
|
|
- carry_out = 1;
|
|
|
- }
|
|
|
- if (carry) {
|
|
|
- word_addition_result++;
|
|
|
- }
|
|
|
- carry = carry_out;
|
|
|
- output.m_words[i] = word_addition_result;
|
|
|
- }
|
|
|
-
|
|
|
- for (size_t i = shorter->length(); i < longer->length(); ++i) {
|
|
|
- u32 word_addition_result = longer->m_words[i] + carry;
|
|
|
-
|
|
|
- carry = 0;
|
|
|
- if (word_addition_result < longer->m_words[i]) {
|
|
|
- carry = 1;
|
|
|
- }
|
|
|
- output.m_words[i] = word_addition_result;
|
|
|
- }
|
|
|
- if (carry) {
|
|
|
- output.m_words.append(carry);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity: O(N) where N is the number of words in the larger number
|
|
|
- */
|
|
|
-void UnsignedBigInteger::subtract_without_allocation(
|
|
|
- const UnsignedBigInteger& left,
|
|
|
- const UnsignedBigInteger& right,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- if (left < right) {
|
|
|
- output.invalidate();
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- u8 borrow = 0;
|
|
|
- auto own_length = left.length();
|
|
|
- auto other_length = right.length();
|
|
|
-
|
|
|
- output.set_to_0();
|
|
|
- output.m_words.resize_and_keep_capacity(own_length);
|
|
|
-
|
|
|
- for (size_t i = 0; i < own_length; ++i) {
|
|
|
- u32 other_word = (i < other_length) ? right.m_words[i] : 0;
|
|
|
- i64 temp = static_cast<i64>(left.m_words[i]) - static_cast<i64>(other_word) - static_cast<i64>(borrow);
|
|
|
- // If temp < 0, we had an underflow
|
|
|
- borrow = (temp >= 0) ? 0 : 1;
|
|
|
- if (temp < 0) {
|
|
|
- temp += (UINT32_MAX + 1);
|
|
|
- }
|
|
|
- output.m_words[i] = temp;
|
|
|
- }
|
|
|
-
|
|
|
- // This assertion should not fail, because we verified that *this>=other at the beginning of the function
|
|
|
- VERIFY(borrow == 0);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity: O(N) where N is the number of words in the shorter value
|
|
|
- * Method:
|
|
|
- * Apply <op> word-wise until words in the shorter value are used up
|
|
|
- * then copy the rest of the words verbatim from the longer value.
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::bitwise_or_without_allocation(
|
|
|
- const UnsignedBigInteger& left,
|
|
|
- const UnsignedBigInteger& right,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- // If either of the BigInts are invalid, the output is just the other one.
|
|
|
- if (left.is_invalid()) {
|
|
|
- output.set_to(right);
|
|
|
- return;
|
|
|
- }
|
|
|
- if (right.is_invalid()) {
|
|
|
- output.set_to(left);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- const UnsignedBigInteger *shorter, *longer;
|
|
|
- if (left.length() < right.length()) {
|
|
|
- shorter = &left;
|
|
|
- longer = &right;
|
|
|
- } else {
|
|
|
- shorter = &right;
|
|
|
- longer = &left;
|
|
|
- }
|
|
|
-
|
|
|
- output.m_words.resize_and_keep_capacity(longer->length());
|
|
|
-
|
|
|
- size_t longer_offset = longer->length() - shorter->length();
|
|
|
- for (size_t i = 0; i < shorter->length(); ++i)
|
|
|
- output.m_words[i] = longer->words()[i] | shorter->words()[i];
|
|
|
-
|
|
|
- __builtin_memcpy(output.m_words.data() + shorter->length(), longer->words().data() + shorter->length(), sizeof(u32) * longer_offset);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity: O(N) where N is the number of words in the shorter value
|
|
|
- * Method:
|
|
|
- * Apply 'and' word-wise until words in the shorter value are used up
|
|
|
- * and zero the rest.
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::bitwise_and_without_allocation(
|
|
|
- const UnsignedBigInteger& left,
|
|
|
- const UnsignedBigInteger& right,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- // If either of the BigInts are invalid, the output is just the other one.
|
|
|
- if (left.is_invalid()) {
|
|
|
- output.set_to(right);
|
|
|
- return;
|
|
|
- }
|
|
|
- if (right.is_invalid()) {
|
|
|
- output.set_to(left);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- const UnsignedBigInteger *shorter, *longer;
|
|
|
- if (left.length() < right.length()) {
|
|
|
- shorter = &left;
|
|
|
- longer = &right;
|
|
|
- } else {
|
|
|
- shorter = &right;
|
|
|
- longer = &left;
|
|
|
- }
|
|
|
-
|
|
|
- output.m_words.resize_and_keep_capacity(longer->length());
|
|
|
-
|
|
|
- size_t longer_offset = longer->length() - shorter->length();
|
|
|
- for (size_t i = 0; i < shorter->length(); ++i)
|
|
|
- output.m_words[i] = longer->words()[i] & shorter->words()[i];
|
|
|
-
|
|
|
- __builtin_memset(output.m_words.data() + shorter->length(), 0, sizeof(u32) * longer_offset);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity: O(N) where N is the number of words in the shorter value
|
|
|
- * Method:
|
|
|
- * Apply 'xor' word-wise until words in the shorter value are used up
|
|
|
- * and copy the rest.
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::bitwise_xor_without_allocation(
|
|
|
- const UnsignedBigInteger& left,
|
|
|
- const UnsignedBigInteger& right,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- // If either of the BigInts are invalid, the output is just the other one.
|
|
|
- if (left.is_invalid()) {
|
|
|
- output.set_to(right);
|
|
|
- return;
|
|
|
- }
|
|
|
- if (right.is_invalid()) {
|
|
|
- output.set_to(left);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- const UnsignedBigInteger *shorter, *longer;
|
|
|
- if (left.length() < right.length()) {
|
|
|
- shorter = &left;
|
|
|
- longer = &right;
|
|
|
- } else {
|
|
|
- shorter = &right;
|
|
|
- longer = &left;
|
|
|
- }
|
|
|
-
|
|
|
- output.m_words.resize_and_keep_capacity(longer->length());
|
|
|
-
|
|
|
- size_t longer_offset = longer->length() - shorter->length();
|
|
|
- for (size_t i = 0; i < shorter->length(); ++i)
|
|
|
- output.m_words[i] = longer->words()[i] ^ shorter->words()[i];
|
|
|
-
|
|
|
- __builtin_memcpy(output.m_words.data() + shorter->length(), longer->words().data() + shorter->length(), sizeof(u32) * longer_offset);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity: O(N) where N is the number of words
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::bitwise_not_without_allocation(
|
|
|
- const UnsignedBigInteger& right,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- // If the value is invalid, the output value is invalid as well.
|
|
|
- if (right.is_invalid()) {
|
|
|
- output.invalidate();
|
|
|
- return;
|
|
|
- }
|
|
|
- if (right.length() == 0) {
|
|
|
- output.set_to_0();
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- output.m_words.resize_and_keep_capacity(right.length());
|
|
|
-
|
|
|
- if (right.length() > 1) {
|
|
|
- for (size_t i = 0; i < right.length() - 1; ++i)
|
|
|
- output.m_words[i] = ~right.words()[i];
|
|
|
- }
|
|
|
-
|
|
|
- auto last_word_index = right.length() - 1;
|
|
|
- auto last_word = right.words()[last_word_index];
|
|
|
-
|
|
|
- output.m_words[last_word_index] = ((u32)0xffffffffffffffff >> __builtin_clz(last_word)) & ~last_word;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity : O(N + num_bits % 8) where N is the number of words in the number
|
|
|
- * Shift method :
|
|
|
- * Start by shifting by whole words in num_bits (by putting missing words at the start),
|
|
|
- * then shift the number's words two by two by the remaining amount of bits.
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::shift_left_without_allocation(
|
|
|
- const UnsignedBigInteger& number,
|
|
|
- size_t num_bits,
|
|
|
- UnsignedBigInteger& temp_result,
|
|
|
- UnsignedBigInteger& temp_plus,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- // We can only do shift operations on individual words
|
|
|
- // where the shift amount is <= size of word (32).
|
|
|
- // But we do know how to shift by a multiple of word size (e.g 64=32*2)
|
|
|
- // So we first shift the result by how many whole words fit in 'num_bits'
|
|
|
- shift_left_by_n_words(number, num_bits / UnsignedBigInteger::BITS_IN_WORD, temp_result);
|
|
|
-
|
|
|
- output.set_to(temp_result);
|
|
|
-
|
|
|
- // And now we shift by the leftover amount of bits
|
|
|
- num_bits %= UnsignedBigInteger::BITS_IN_WORD;
|
|
|
-
|
|
|
- if (num_bits == 0) {
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- for (size_t i = 0; i < temp_result.length(); ++i) {
|
|
|
- u32 current_word_of_temp_result = shift_left_get_one_word(temp_result, num_bits, i);
|
|
|
- output.m_words[i] = current_word_of_temp_result;
|
|
|
- }
|
|
|
-
|
|
|
- // Shifting the last word can produce a carry
|
|
|
- u32 carry_word = shift_left_get_one_word(temp_result, num_bits, temp_result.length());
|
|
|
- if (carry_word != 0) {
|
|
|
-
|
|
|
- // output += (carry_word << temp_result.length())
|
|
|
- // FIXME : Using temp_plus this way to transform carry_word into a bigint is not
|
|
|
- // efficient nor pretty. Maybe we should have an "add_with_shift" method ?
|
|
|
- temp_plus.set_to_0();
|
|
|
- temp_plus.m_words.append(carry_word);
|
|
|
- shift_left_by_n_words(temp_plus, temp_result.length(), temp_result);
|
|
|
- add_without_allocation(output, temp_result, temp_plus);
|
|
|
- output.set_to(temp_plus);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity: O(N^2) where N is the number of words in the larger number
|
|
|
- * Multiplication method:
|
|
|
- * An integer is equal to the sum of the powers of two
|
|
|
- * according to the indices of its 'on' bits.
|
|
|
- * So to multiple x*y, we go over each '1' bit in x (say the i'th bit),
|
|
|
- * and add y<<i to the result.
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::multiply_without_allocation(
|
|
|
- const UnsignedBigInteger& left,
|
|
|
- const UnsignedBigInteger& right,
|
|
|
- UnsignedBigInteger& temp_shift_result,
|
|
|
- UnsignedBigInteger& temp_shift_plus,
|
|
|
- UnsignedBigInteger& temp_shift,
|
|
|
- UnsignedBigInteger& temp_plus,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- output.set_to_0();
|
|
|
-
|
|
|
- // iterate all bits
|
|
|
- for (size_t word_index = 0; word_index < left.length(); ++word_index) {
|
|
|
- for (size_t bit_index = 0; bit_index < UnsignedBigInteger::BITS_IN_WORD; ++bit_index) {
|
|
|
- // If the bit is off - skip over it
|
|
|
- if (!(left.m_words[word_index] & (1 << bit_index)))
|
|
|
- continue;
|
|
|
-
|
|
|
- const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
|
|
|
-
|
|
|
- // output += (right << shift_amount);
|
|
|
- shift_left_without_allocation(right, shift_amount, temp_shift_result, temp_shift_plus, temp_shift);
|
|
|
- add_without_allocation(output, temp_shift, temp_plus);
|
|
|
- output.set_to(temp_plus);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity: O(N^2) where N is the number of words in the larger number
|
|
|
- * Division method:
|
|
|
- * We loop over the bits of the divisor, attempting to subtract divisor<<i from the dividend.
|
|
|
- * If the result is non-negative, it means that divisor*2^i "fits" in the dividend,
|
|
|
- * so we set the ith bit in the quotient and reduce divisor<<i from the dividend.
|
|
|
- * When we're done, what's left from the dividend is the remainder.
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::divide_without_allocation(
|
|
|
- const UnsignedBigInteger& numerator,
|
|
|
- const UnsignedBigInteger& denominator,
|
|
|
- UnsignedBigInteger& temp_shift_result,
|
|
|
- UnsignedBigInteger& temp_shift_plus,
|
|
|
- UnsignedBigInteger& temp_shift,
|
|
|
- UnsignedBigInteger& temp_minus,
|
|
|
- UnsignedBigInteger& quotient,
|
|
|
- UnsignedBigInteger& remainder)
|
|
|
-{
|
|
|
- quotient.set_to_0();
|
|
|
- remainder.set_to(numerator);
|
|
|
-
|
|
|
- // iterate all bits
|
|
|
- for (int word_index = numerator.trimmed_length() - 1; word_index >= 0; --word_index) {
|
|
|
- for (int bit_index = UnsignedBigInteger::BITS_IN_WORD - 1; bit_index >= 0; --bit_index) {
|
|
|
- const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
|
|
|
- shift_left_without_allocation(denominator, shift_amount, temp_shift_result, temp_shift_plus, temp_shift);
|
|
|
-
|
|
|
- subtract_without_allocation(remainder, temp_shift, temp_minus);
|
|
|
- if (!temp_minus.is_invalid()) {
|
|
|
- remainder.set_to(temp_minus);
|
|
|
- quotient.set_bit_inplace(shift_amount);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Complexity : O(N) where N is the number of digits in the numerator
|
|
|
- * Division method :
|
|
|
- * Starting from the most significant one, for each half-word of the numerator, combine it
|
|
|
- * with the existing remainder if any, divide the combined number as a u32 operation and
|
|
|
- * update the quotient / remainder as needed.
|
|
|
- */
|
|
|
-FLATTEN void UnsignedBigInteger::divide_u16_without_allocation(
|
|
|
- const UnsignedBigInteger& numerator,
|
|
|
- u32 denominator,
|
|
|
- UnsignedBigInteger& quotient,
|
|
|
- UnsignedBigInteger& remainder)
|
|
|
-{
|
|
|
- VERIFY(denominator < (1 << 16));
|
|
|
- u32 remainder_word = 0;
|
|
|
- auto numerator_length = numerator.trimmed_length();
|
|
|
- quotient.set_to_0();
|
|
|
- quotient.m_words.resize(numerator_length);
|
|
|
- for (int word_index = numerator_length - 1; word_index >= 0; --word_index) {
|
|
|
- auto word_high = numerator.m_words[word_index] >> 16;
|
|
|
- auto word_low = numerator.m_words[word_index] & ((1 << 16) - 1);
|
|
|
-
|
|
|
- auto number_to_divide_high = (remainder_word << 16) | word_high;
|
|
|
- auto quotient_high = number_to_divide_high / denominator;
|
|
|
- remainder_word = number_to_divide_high % denominator;
|
|
|
-
|
|
|
- auto number_to_divide_low = remainder_word << 16 | word_low;
|
|
|
- auto quotient_low = number_to_divide_low / denominator;
|
|
|
- remainder_word = number_to_divide_low % denominator;
|
|
|
-
|
|
|
- quotient.m_words[word_index] = (quotient_high << 16) | quotient_low;
|
|
|
- }
|
|
|
- remainder.set_to(remainder_word);
|
|
|
-}
|
|
|
-
|
|
|
-ALWAYS_INLINE void UnsignedBigInteger::shift_left_by_n_words(
|
|
|
- const UnsignedBigInteger& number,
|
|
|
- const size_t number_of_words,
|
|
|
- UnsignedBigInteger& output)
|
|
|
-{
|
|
|
- // shifting left by N words means just inserting N zeroes to the beginning of the words vector
|
|
|
- output.set_to_0();
|
|
|
- output.m_words.resize_and_keep_capacity(number_of_words + number.length());
|
|
|
-
|
|
|
- __builtin_memset(output.m_words.data(), 0, number_of_words * sizeof(unsigned));
|
|
|
- __builtin_memcpy(&output.m_words.data()[number_of_words], number.m_words.data(), number.m_words.size() * sizeof(unsigned));
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * Returns the word at a requested index in the result of a shift operation
|
|
|
- */
|
|
|
-ALWAYS_INLINE u32 UnsignedBigInteger::shift_left_get_one_word(
|
|
|
- const UnsignedBigInteger& number,
|
|
|
- const size_t num_bits,
|
|
|
- const size_t result_word_index)
|
|
|
-{
|
|
|
- // "<= length()" (rather than length() - 1) is intentional,
|
|
|
- // The result inedx of length() is used when calculating the carry word
|
|
|
- VERIFY(result_word_index <= number.length());
|
|
|
- VERIFY(num_bits <= UnsignedBigInteger::BITS_IN_WORD);
|
|
|
- u32 result = 0;
|
|
|
-
|
|
|
- // we need to check for "num_bits != 0" since shifting right by 32 is apparently undefined behaviour!
|
|
|
- if (result_word_index > 0 && num_bits != 0) {
|
|
|
- result += number.m_words[result_word_index - 1] >> (UnsignedBigInteger::BITS_IN_WORD - num_bits);
|
|
|
- }
|
|
|
- if (result_word_index < number.length() && num_bits < 32) {
|
|
|
- result += number.m_words[result_word_index] << num_bits;
|
|
|
- }
|
|
|
- return result;
|
|
|
-}
|
|
|
}
|
|
|
|
|
|
void AK::Formatter<Crypto::UnsignedBigInteger>::format(FormatBuilder& fmtbuilder, const Crypto::UnsignedBigInteger& value)
|