Преглед изворни кода

LibCrypto: Add a way to compare UnsignedBigInteger with double

This patch also make SignedBigInteger::compare_to_double make use
of the new function.
Moustafa Raafat пре 2 година
родитељ
комит
54b8a2b094

+ 84 - 8
Tests/LibCrypto/TestBigInteger.cpp

@@ -660,9 +660,9 @@ TEST_CASE(test_negative_zero_is_not_allowed)
 }
 
 TEST_CASE(double_comparisons) {
-#define EXPECT_LESS_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::SignedBigInteger::CompareResult::DoubleGreaterThanBigInt)
-#define EXPECT_GREATER_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt)
-#define EXPECT_EQUAL_TO(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt)
+#define EXPECT_LESS_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt)
+#define EXPECT_GREATER_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
+#define EXPECT_EQUAL_TO(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
     { Crypto::SignedBigInteger zero { 0 };
 EXPECT_EQUAL_TO(zero, 0.0);
 EXPECT_EQUAL_TO(zero, -0.0);
@@ -687,6 +687,14 @@ EXPECT_EQUAL_TO(zero, -0.0);
     EXPECT_GREATER_THAN(one, -1.000001);
 }
 
+{
+    double double_infinity = HUGE_VAL;
+    VERIFY(isinf(double_infinity));
+    Crypto::SignedBigInteger one { 1 };
+    EXPECT_LESS_THAN(one, double_infinity);
+    EXPECT_GREATER_THAN(one, -double_infinity);
+}
+
 {
     double double_max_value = NumericLimits<double>::max();
     double double_below_max_value = nextafter(double_max_value, 0.0);
@@ -938,18 +946,86 @@ TEST_CASE(bigint_from_double)
 #undef SURVIVES_ROUND_TRIP_SIGNED
 #undef SURVIVES_ROUND_TRIP_UNSIGNED
 }
+
+TEST_CASE(unsigned_bigint_double_comparisons)
+{
+#define EXPECT_LESS_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt)
+#define EXPECT_GREATER_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
+#define EXPECT_EQUAL_TO(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
+
+    {
+        Crypto::UnsignedBigInteger zero { 0 };
+        EXPECT_EQUAL_TO(zero, 0.0);
+        EXPECT_EQUAL_TO(zero, -0.0);
+    }
+
+    {
+        Crypto::UnsignedBigInteger one { 1 };
+        EXPECT_EQUAL_TO(one, 1.0);
+        EXPECT_GREATER_THAN(one, -1.0);
+        EXPECT_GREATER_THAN(one, 0.5);
+        EXPECT_GREATER_THAN(one, -0.5);
+        EXPECT_LESS_THAN(one, 1.000001);
+    }
+
+    {
+        double double_infinity = HUGE_VAL;
+        VERIFY(isinf(double_infinity));
+        Crypto::UnsignedBigInteger one { 1 };
+        EXPECT_LESS_THAN(one, double_infinity);
+        EXPECT_GREATER_THAN(one, -double_infinity);
+    }
+
+    {
+        double double_max_value = NumericLimits<double>::max();
+        double double_below_max_value = nextafter(double_max_value, 0.0);
+        VERIFY(double_below_max_value < double_max_value);
+        VERIFY(double_below_max_value < (double_max_value - 1.0));
+        auto max_value_in_bigint = Crypto::UnsignedBigInteger::from_base(16, "fffffffffffff800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"sv);
+        auto max_value_plus_one = max_value_in_bigint.plus(Crypto::UnsignedBigInteger { 1 });
+        auto max_value_minus_one = max_value_in_bigint.minus(Crypto::UnsignedBigInteger { 1 });
+
+        auto below_max_value_in_bigint = Crypto::UnsignedBigInteger::from_base(16, "fffffffffffff000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"sv);
+
+        EXPECT_EQUAL_TO(max_value_in_bigint, double_max_value);
+        EXPECT_LESS_THAN(max_value_minus_one, double_max_value);
+        EXPECT_GREATER_THAN(max_value_plus_one, double_max_value);
+        EXPECT_LESS_THAN(below_max_value_in_bigint, double_max_value);
+
+        EXPECT_GREATER_THAN(max_value_in_bigint, double_below_max_value);
+        EXPECT_GREATER_THAN(max_value_minus_one, double_below_max_value);
+        EXPECT_GREATER_THAN(max_value_plus_one, double_below_max_value);
+        EXPECT_EQUAL_TO(below_max_value_in_bigint, double_below_max_value);
+    }
+
+    {
+        double just_above_255 = bit_cast<double>(0x406fe00000000001ULL);
+        double just_below_255 = bit_cast<double>(0x406fdfffffffffffULL);
+        double double_255 = 255.0;
+        Crypto::UnsignedBigInteger bigint_255 { 255 };
+
+        EXPECT_EQUAL_TO(bigint_255, double_255);
+        EXPECT_GREATER_THAN(bigint_255, just_below_255);
+        EXPECT_LESS_THAN(bigint_255, just_above_255);
+    }
+
+#undef EXPECT_LESS_THAN
+#undef EXPECT_GREATER_THAN
+#undef EXPECT_EQUAL_TO
+}
+
 namespace AK {
 
 template<>
-struct Formatter<Crypto::SignedBigInteger::CompareResult> : Formatter<StringView> {
-    ErrorOr<void> format(FormatBuilder& builder, Crypto::SignedBigInteger::CompareResult const& compare_result)
+struct Formatter<Crypto::UnsignedBigInteger::CompareResult> : Formatter<StringView> {
+    ErrorOr<void> format(FormatBuilder& builder, Crypto::UnsignedBigInteger::CompareResult const& compare_result)
     {
         switch (compare_result) {
-        case Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt:
+        case Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt:
             return builder.put_string("Equals"sv);
-        case Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt:
+        case Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt:
             return builder.put_string("LessThan"sv);
-        case Crypto::SignedBigInteger::CompareResult::DoubleGreaterThanBigInt:
+        case Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt:
             return builder.put_string("GreaterThan"sv);
         default:
             return builder.put_string("???"sv);

+ 18 - 140
Userland/Libraries/LibCrypto/BigInt/SignedBigInteger.cpp

@@ -351,153 +351,31 @@ bool SignedBigInteger::operator>=(SignedBigInteger const& other) const
     return !(*this < other);
 }
 
-SignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
+UnsignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
 {
-    VERIFY(!isnan(value));
-
-    if (isinf(value)) {
-        bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
-        return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
-    }
-
     bool bigint_is_negative = m_sign;
 
     bool value_is_negative = value < 0;
 
     if (value_is_negative != bigint_is_negative)
-        return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
-
-    // Value is zero, and from above the signs must be the same.
-    if (value == 0.0) {
-        VERIFY(!value_is_negative && !bigint_is_negative);
-        // Either we are also zero or value is certainly less than us.
-        return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
-    }
-
-    // If value is not zero but we are, then since the signs are the same value must be greater.
-    if (is_zero())
-        return CompareResult::DoubleGreaterThanBigInt;
-
-    constexpr u64 mantissa_size = 52;
-    constexpr u64 exponent_size = 11;
-    constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1;
-    union FloatExtractor {
-        struct {
-            unsigned long long mantissa : mantissa_size;
-            unsigned exponent : exponent_size;
-            unsigned sign : 1;
-        };
-        double d;
-    } extractor;
-
-    extractor.d = value;
-    VERIFY(extractor.exponent != (1 << exponent_size) - 1);
-    // Exponent cannot be filled as than we must be NaN or infinity.
-
-    i32 real_exponent = extractor.exponent - exponent_bias;
-    if (real_exponent < 0) {
-        // |value| is less than 1, and we cannot be zero so if we are negative
-        // value must be greater and vice versa.
-        return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
-    }
-
-    u64 bigint_bits_needed = m_unsigned_data.one_based_index_of_highest_set_bit();
-    VERIFY(bigint_bits_needed > 0);
-
-    // Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
-    // `exponent - bias + 1` bit to represent doubles value,
-    // for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
-    // `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
-    u32 double_bits_needed = real_exponent + 1;
-
-    if (bigint_bits_needed > double_bits_needed) {
-        // If we need more bits to represent us, we must be of greater magnitude
-        // this means that if we are negative we are below value and if positive above value.
-        return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
-    }
-
-    if (bigint_bits_needed < double_bits_needed)
-        return bigint_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
-
-    u64 mantissa_bits = extractor.mantissa;
-
-    // We add the bit which represents the 1. of the double value calculation
-    constexpr u64 mantissa_extended_bit = 1ull << mantissa_size;
-
-    mantissa_bits |= mantissa_extended_bit;
-
-    // Now we shift value to the left virtually, with `exponent - bias` steps
-    // we then pretend both it and the big int are extended with virtual zeros.
-    using Word = UnsignedBigInteger::Word;
-    auto next_bigint_word = (UnsignedBigInteger::BITS_IN_WORD - 1 + bigint_bits_needed) / UnsignedBigInteger::BITS_IN_WORD;
-
-    VERIFY(next_bigint_word + 1 == trimmed_length());
-
-    auto msb_in_top_word_index = (bigint_bits_needed - 1) % UnsignedBigInteger::BITS_IN_WORD;
-    VERIFY(msb_in_top_word_index == (UnsignedBigInteger::BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
-
-    // We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
-    mantissa_bits <<= 64 - (mantissa_size + 1);
-
-    auto bits_left_in_mantissa = mantissa_size + 1;
-
-    auto get_next_value_bits = [&](size_t num_bits) -> Word {
-        VERIFY(num_bits < 63);
-        VERIFY(bits_left_in_mantissa > 0);
-        if (num_bits > bits_left_in_mantissa)
-            num_bits = bits_left_in_mantissa;
-
-        bits_left_in_mantissa -= num_bits;
-
-        u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
-        // Now shift the bits down to put the most significant bit on the num_bits position
-        // this means the rest will be "virtual" zeros.
-        extracted_bits >>= 32;
-
-        // Now shift away the used bits and fit the result into a Word.
-        mantissa_bits <<= num_bits;
-
-        VERIFY(extracted_bits <= NumericLimits<Word>::max());
-        return static_cast<Word>(extracted_bits);
-    };
-
-    auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
-
-    while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
-        Word bigint_word = words()[next_bigint_word - 1];
-        Word double_word = get_next_value_bits(bits_in_next_bigint_word);
-
-        // For the first bit we have to align it with the top bit of bigint
-        // and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
-        double_word >>= 32 - bits_in_next_bigint_word;
-
-        if (bigint_word < double_word)
-            return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
-
-        if (bigint_word > double_word)
-            return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
-
-        --next_bigint_word;
-        bits_in_next_bigint_word = UnsignedBigInteger::BITS_IN_WORD;
+        return bigint_is_negative ? UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt : UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
+
+    // Now both bigint and value have the same sign, so let's compare our magnitudes.
+    auto magnitudes_compare_result = m_unsigned_data.compare_to_double(fabs(value));
+
+    // If our mangnitudes are euqal, then we're equal.
+    if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
+        return UnsignedBigInteger::CompareResult::DoubleEqualsBigInt;
+
+    // If we're negative, revert the comparison result, otherwise return the same result.
+    if (value_is_negative) {
+        if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
+            return UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
+        else
+            return UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
+    } else {
+        return magnitudes_compare_result;
     }
-
-    // If there are still bits left in bigint than any non zero bit means it has greater magnitude.
-    if (next_bigint_word > 0) {
-        VERIFY(bits_left_in_mantissa == 0);
-        while (next_bigint_word > 0) {
-            if (words()[next_bigint_word - 1] != 0)
-                return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
-            --next_bigint_word;
-        }
-    } else if (bits_left_in_mantissa > 0) {
-        VERIFY(next_bigint_word == 0);
-        // Similarly if there are still any bits set in the mantissa it has greater magnitude.
-        if (mantissa_bits != 0)
-            return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
-    }
-
-    // Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
-    return CompareResult::DoubleEqualsBigInt;
 }
 
 }

+ 1 - 7
Userland/Libraries/LibCrypto/BigInt/SignedBigInteger.h

@@ -140,13 +140,7 @@ public:
     [[nodiscard]] bool operator<(UnsignedBigInteger const& other) const;
     [[nodiscard]] bool operator>(UnsignedBigInteger const& other) const;
 
-    enum class CompareResult {
-        DoubleEqualsBigInt,
-        DoubleLessThanBigInt,
-        DoubleGreaterThanBigInt
-    };
-
-    [[nodiscard]] CompareResult compare_to_double(double) const;
+    [[nodiscard]] UnsignedBigInteger::CompareResult compare_to_double(double) const;
 
 private:
     void ensure_sign_is_valid()

+ 145 - 0
Userland/Libraries/LibCrypto/BigInt/UnsignedBigInteger.cpp

@@ -602,6 +602,151 @@ bool UnsignedBigInteger::operator>=(UnsignedBigInteger const& other) const
     return *this > other || *this == other;
 }
 
+UnsignedBigInteger::CompareResult UnsignedBigInteger::compare_to_double(double value) const
+{
+    VERIFY(!isnan(value));
+
+    if (isinf(value)) {
+        bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
+        return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
+    }
+
+    bool value_is_negative = value < 0;
+
+    if (value_is_negative)
+        return CompareResult::DoubleLessThanBigInt;
+
+    // Value is zero.
+    if (value == 0.0) {
+        VERIFY(!value_is_negative);
+        // Either we are also zero or value is certainly less than us.
+        return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
+    }
+
+    // If value is not zero but we are, value must be greater.
+    if (is_zero())
+        return CompareResult::DoubleGreaterThanBigInt;
+
+    constexpr u64 mantissa_size = 52;
+    constexpr u64 exponent_size = 11;
+    constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1;
+    union FloatExtractor {
+        struct {
+            unsigned long long mantissa : mantissa_size;
+            unsigned exponent : exponent_size;
+            unsigned sign : 1;
+        };
+        double d;
+    } extractor;
+
+    extractor.d = value;
+    // Value cannot be negative at this point.
+    VERIFY(extractor.sign == 0);
+    // Exponent cannot be all set, as then we must be NaN or infinity.
+    VERIFY(extractor.exponent != (1 << exponent_size) - 1);
+
+    i32 real_exponent = extractor.exponent - exponent_bias;
+    if (real_exponent < 0) {
+        // value is less than 1, and we cannot be zero so value must be less.
+        return CompareResult::DoubleLessThanBigInt;
+    }
+
+    u64 bigint_bits_needed = one_based_index_of_highest_set_bit();
+    VERIFY(bigint_bits_needed > 0);
+
+    // Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
+    // `exponent - bias + 1` bit to represent doubles value,
+    // for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
+    // `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
+    u32 double_bits_needed = real_exponent + 1;
+
+    // If we need more bits to represent us, we must be of greater value.
+    if (bigint_bits_needed > double_bits_needed)
+        return CompareResult::DoubleLessThanBigInt;
+    // If we need less bits to represent us, we must be of less value.
+    if (bigint_bits_needed < double_bits_needed)
+        return CompareResult::DoubleGreaterThanBigInt;
+
+    u64 mantissa_bits = extractor.mantissa;
+
+    // We add the bit which represents the 1. of the double value calculation.
+    constexpr u64 mantissa_extended_bit = 1ull << mantissa_size;
+
+    mantissa_bits |= mantissa_extended_bit;
+
+    // Now we shift value to the left virtually, with `exponent - bias` steps
+    // we then pretend both it and the big int are extended with virtual zeros.
+    auto next_bigint_word = (BITS_IN_WORD - 1 + bigint_bits_needed) / BITS_IN_WORD;
+
+    VERIFY(next_bigint_word == trimmed_length());
+
+    auto msb_in_top_word_index = (bigint_bits_needed - 1) % BITS_IN_WORD;
+    VERIFY(msb_in_top_word_index == (BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
+
+    // We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
+    mantissa_bits <<= 64 - (mantissa_size + 1);
+
+    auto bits_left_in_mantissa = mantissa_size + 1;
+
+    auto get_next_value_bits = [&](size_t num_bits) -> Word {
+        VERIFY(num_bits < 63);
+        VERIFY(bits_left_in_mantissa > 0);
+        if (num_bits > bits_left_in_mantissa)
+            num_bits = bits_left_in_mantissa;
+
+        bits_left_in_mantissa -= num_bits;
+
+        u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
+        // Now shift the bits down to put the most significant bit on the num_bits position
+        // this means the rest will be "virtual" zeros.
+        extracted_bits >>= 32;
+
+        // Now shift away the used bits and fit the result into a Word.
+        mantissa_bits <<= num_bits;
+
+        VERIFY(extracted_bits <= NumericLimits<Word>::max());
+        return static_cast<Word>(extracted_bits);
+    };
+
+    auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
+
+    while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
+        Word bigint_word = words()[next_bigint_word - 1];
+        Word double_word = get_next_value_bits(bits_in_next_bigint_word);
+
+        // For the first bit we have to align it with the top bit of bigint
+        // and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
+        double_word >>= 32 - bits_in_next_bigint_word;
+
+        if (bigint_word < double_word)
+            return CompareResult::DoubleGreaterThanBigInt;
+
+        if (bigint_word > double_word)
+            return CompareResult::DoubleLessThanBigInt;
+
+        --next_bigint_word;
+        bits_in_next_bigint_word = BITS_IN_WORD;
+    }
+
+    // If there are still bits left in bigint than any non zero bit means it has greater value.
+    if (next_bigint_word > 0) {
+        VERIFY(bits_left_in_mantissa == 0);
+        while (next_bigint_word > 0) {
+            if (words()[next_bigint_word - 1] != 0)
+                return CompareResult::DoubleLessThanBigInt;
+            --next_bigint_word;
+        }
+    } else if (bits_left_in_mantissa > 0) {
+        VERIFY(next_bigint_word == 0);
+        // Similarly if there are still any bits set in the mantissa it has greater value.
+        if (mantissa_bits != 0)
+            return CompareResult::DoubleGreaterThanBigInt;
+    }
+
+    // Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
+    return CompareResult::DoubleEqualsBigInt;
+}
+
 }
 
 ErrorOr<void> AK::Formatter<Crypto::UnsignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::UnsignedBigInteger const& value)

+ 8 - 0
Userland/Libraries/LibCrypto/BigInt/UnsignedBigInteger.h

@@ -121,6 +121,14 @@ public:
     [[nodiscard]] bool operator>(UnsignedBigInteger const& other) const;
     [[nodiscard]] bool operator>=(UnsignedBigInteger const& other) const;
 
+    enum class CompareResult {
+        DoubleEqualsBigInt,
+        DoubleLessThanBigInt,
+        DoubleGreaterThanBigInt
+    };
+
+    [[nodiscard]] CompareResult compare_to_double(double) const;
+
 private:
     friend class UnsignedBigIntegerAlgorithms;
     // Little endian

+ 1 - 1
Userland/Libraries/LibJS/Runtime/Temporal/ZonedDateTime.cpp

@@ -557,7 +557,7 @@ ThrowCompletionOr<NanosecondsToDaysResult> nanoseconds_to_days(VM& vm, Crypto::S
     // 23. If abs(nanoseconds) ≥ abs(dayLengthNs), throw a RangeError exception.
     auto nanoseconds_absolute = nanoseconds.is_negative() ? nanoseconds.negated_value() : nanoseconds;
     auto compare_result = nanoseconds_absolute.compare_to_double(fabs(day_length_ns.to_double()));
-    if (compare_result == Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt || compare_result == Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt)
+    if (compare_result == Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt || compare_result == Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
         return vm.throw_completion<RangeError>(ErrorType::TemporalNanosecondsConvertedToRemainderOfNanosecondsLongerThanDayLength);
 
     // 24. Return the Record { [[Days]]: days, [[Nanoseconds]]: nanoseconds, [[DayLength]]: abs(dayLengthNs) }.

+ 3 - 3
Userland/Libraries/LibJS/Runtime/Value.cpp

@@ -1536,7 +1536,7 @@ ThrowCompletionOr<bool> is_loosely_equal(VM& vm, Value lhs, Value rhs)
         auto& number_side = lhs.is_number() ? lhs : rhs;
         auto& bigint_side = lhs.is_number() ? rhs : lhs;
 
-        return bigint_side.as_bigint().big_integer().compare_to_double(number_side.as_double()) == Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt;
+        return bigint_side.as_bigint().big_integer().compare_to_double(number_side.as_double()) == Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt;
     }
 
     // 14. Return false.
@@ -1635,10 +1635,10 @@ ThrowCompletionOr<TriState> is_less_than(VM& vm, Value lhs, Value rhs, bool left
     VERIFY(!x_numeric.is_nan() && !y_numeric.is_nan());
     if (x_numeric.is_number()) {
         x_lower_than_y = y_numeric.as_bigint().big_integer().compare_to_double(x_numeric.as_double())
-            == Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt;
+            == Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
     } else {
         x_lower_than_y = x_numeric.as_bigint().big_integer().compare_to_double(y_numeric.as_double())
-            == Crypto::SignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
+            == Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
     }
     if (x_lower_than_y)
         return TriState::True;