LibCrypto: Add a way to compare UnsignedBigInteger with double

This patch also make SignedBigInteger::compare_to_double make use
of the new function.
This commit is contained in:
Moustafa Raafat 2022-10-23 16:46:35 +01:00 committed by Andrew Kaster
parent e03f014e7a
commit 54b8a2b094
Notes: sideshowbarker 2024-07-17 04:51:04 +09:00
7 changed files with 259 additions and 158 deletions

View file

@ -660,9 +660,9 @@ TEST_CASE(test_negative_zero_is_not_allowed)
}
TEST_CASE(double_comparisons) {
#define EXPECT_LESS_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::SignedBigInteger::CompareResult::DoubleGreaterThanBigInt)
#define EXPECT_GREATER_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt)
#define EXPECT_EQUAL_TO(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt)
#define EXPECT_LESS_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt)
#define EXPECT_GREATER_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
#define EXPECT_EQUAL_TO(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
{ Crypto::SignedBigInteger zero { 0 };
EXPECT_EQUAL_TO(zero, 0.0);
EXPECT_EQUAL_TO(zero, -0.0);
@ -687,6 +687,14 @@ EXPECT_EQUAL_TO(zero, -0.0);
EXPECT_GREATER_THAN(one, -1.000001);
}
{
double double_infinity = HUGE_VAL;
VERIFY(isinf(double_infinity));
Crypto::SignedBigInteger one { 1 };
EXPECT_LESS_THAN(one, double_infinity);
EXPECT_GREATER_THAN(one, -double_infinity);
}
{
double double_max_value = NumericLimits<double>::max();
double double_below_max_value = nextafter(double_max_value, 0.0);
@ -938,18 +946,86 @@ TEST_CASE(bigint_from_double)
#undef SURVIVES_ROUND_TRIP_SIGNED
#undef SURVIVES_ROUND_TRIP_UNSIGNED
}
TEST_CASE(unsigned_bigint_double_comparisons)
{
#define EXPECT_LESS_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt)
#define EXPECT_GREATER_THAN(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
#define EXPECT_EQUAL_TO(bigint, double_value) EXPECT_EQ(bigint.compare_to_double(double_value), Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
{
Crypto::UnsignedBigInteger zero { 0 };
EXPECT_EQUAL_TO(zero, 0.0);
EXPECT_EQUAL_TO(zero, -0.0);
}
{
Crypto::UnsignedBigInteger one { 1 };
EXPECT_EQUAL_TO(one, 1.0);
EXPECT_GREATER_THAN(one, -1.0);
EXPECT_GREATER_THAN(one, 0.5);
EXPECT_GREATER_THAN(one, -0.5);
EXPECT_LESS_THAN(one, 1.000001);
}
{
double double_infinity = HUGE_VAL;
VERIFY(isinf(double_infinity));
Crypto::UnsignedBigInteger one { 1 };
EXPECT_LESS_THAN(one, double_infinity);
EXPECT_GREATER_THAN(one, -double_infinity);
}
{
double double_max_value = NumericLimits<double>::max();
double double_below_max_value = nextafter(double_max_value, 0.0);
VERIFY(double_below_max_value < double_max_value);
VERIFY(double_below_max_value < (double_max_value - 1.0));
auto max_value_in_bigint = Crypto::UnsignedBigInteger::from_base(16, "fffffffffffff800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"sv);
auto max_value_plus_one = max_value_in_bigint.plus(Crypto::UnsignedBigInteger { 1 });
auto max_value_minus_one = max_value_in_bigint.minus(Crypto::UnsignedBigInteger { 1 });
auto below_max_value_in_bigint = Crypto::UnsignedBigInteger::from_base(16, "fffffffffffff000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"sv);
EXPECT_EQUAL_TO(max_value_in_bigint, double_max_value);
EXPECT_LESS_THAN(max_value_minus_one, double_max_value);
EXPECT_GREATER_THAN(max_value_plus_one, double_max_value);
EXPECT_LESS_THAN(below_max_value_in_bigint, double_max_value);
EXPECT_GREATER_THAN(max_value_in_bigint, double_below_max_value);
EXPECT_GREATER_THAN(max_value_minus_one, double_below_max_value);
EXPECT_GREATER_THAN(max_value_plus_one, double_below_max_value);
EXPECT_EQUAL_TO(below_max_value_in_bigint, double_below_max_value);
}
{
double just_above_255 = bit_cast<double>(0x406fe00000000001ULL);
double just_below_255 = bit_cast<double>(0x406fdfffffffffffULL);
double double_255 = 255.0;
Crypto::UnsignedBigInteger bigint_255 { 255 };
EXPECT_EQUAL_TO(bigint_255, double_255);
EXPECT_GREATER_THAN(bigint_255, just_below_255);
EXPECT_LESS_THAN(bigint_255, just_above_255);
}
#undef EXPECT_LESS_THAN
#undef EXPECT_GREATER_THAN
#undef EXPECT_EQUAL_TO
}
namespace AK {
template<>
struct Formatter<Crypto::SignedBigInteger::CompareResult> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder& builder, Crypto::SignedBigInteger::CompareResult const& compare_result)
struct Formatter<Crypto::UnsignedBigInteger::CompareResult> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder& builder, Crypto::UnsignedBigInteger::CompareResult const& compare_result)
{
switch (compare_result) {
case Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt:
case Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt:
return builder.put_string("Equals"sv);
case Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt:
case Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt:
return builder.put_string("LessThan"sv);
case Crypto::SignedBigInteger::CompareResult::DoubleGreaterThanBigInt:
case Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt:
return builder.put_string("GreaterThan"sv);
default:
return builder.put_string("???"sv);

View file

@ -351,153 +351,31 @@ bool SignedBigInteger::operator>=(SignedBigInteger const& other) const
return !(*this < other);
}
SignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
UnsignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
{
VERIFY(!isnan(value));
if (isinf(value)) {
bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
}
bool bigint_is_negative = m_sign;
bool value_is_negative = value < 0;
if (value_is_negative != bigint_is_negative)
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
return bigint_is_negative ? UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt : UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
// Value is zero, and from above the signs must be the same.
if (value == 0.0) {
VERIFY(!value_is_negative && !bigint_is_negative);
// Either we are also zero or value is certainly less than us.
return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
// Now both bigint and value have the same sign, so let's compare our magnitudes.
auto magnitudes_compare_result = m_unsigned_data.compare_to_double(fabs(value));
// If our mangnitudes are euqal, then we're equal.
if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
return UnsignedBigInteger::CompareResult::DoubleEqualsBigInt;
// If we're negative, revert the comparison result, otherwise return the same result.
if (value_is_negative) {
if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
return UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
else
return UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
} else {
return magnitudes_compare_result;
}
// If value is not zero but we are, then since the signs are the same value must be greater.
if (is_zero())
return CompareResult::DoubleGreaterThanBigInt;
constexpr u64 mantissa_size = 52;
constexpr u64 exponent_size = 11;
constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1;
union FloatExtractor {
struct {
unsigned long long mantissa : mantissa_size;
unsigned exponent : exponent_size;
unsigned sign : 1;
};
double d;
} extractor;
extractor.d = value;
VERIFY(extractor.exponent != (1 << exponent_size) - 1);
// Exponent cannot be filled as than we must be NaN or infinity.
i32 real_exponent = extractor.exponent - exponent_bias;
if (real_exponent < 0) {
// |value| is less than 1, and we cannot be zero so if we are negative
// value must be greater and vice versa.
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
}
u64 bigint_bits_needed = m_unsigned_data.one_based_index_of_highest_set_bit();
VERIFY(bigint_bits_needed > 0);
// Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
// `exponent - bias + 1` bit to represent doubles value,
// for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
// `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
u32 double_bits_needed = real_exponent + 1;
if (bigint_bits_needed > double_bits_needed) {
// If we need more bits to represent us, we must be of greater magnitude
// this means that if we are negative we are below value and if positive above value.
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
}
if (bigint_bits_needed < double_bits_needed)
return bigint_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
u64 mantissa_bits = extractor.mantissa;
// We add the bit which represents the 1. of the double value calculation
constexpr u64 mantissa_extended_bit = 1ull << mantissa_size;
mantissa_bits |= mantissa_extended_bit;
// Now we shift value to the left virtually, with `exponent - bias` steps
// we then pretend both it and the big int are extended with virtual zeros.
using Word = UnsignedBigInteger::Word;
auto next_bigint_word = (UnsignedBigInteger::BITS_IN_WORD - 1 + bigint_bits_needed) / UnsignedBigInteger::BITS_IN_WORD;
VERIFY(next_bigint_word + 1 == trimmed_length());
auto msb_in_top_word_index = (bigint_bits_needed - 1) % UnsignedBigInteger::BITS_IN_WORD;
VERIFY(msb_in_top_word_index == (UnsignedBigInteger::BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
// We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
mantissa_bits <<= 64 - (mantissa_size + 1);
auto bits_left_in_mantissa = mantissa_size + 1;
auto get_next_value_bits = [&](size_t num_bits) -> Word {
VERIFY(num_bits < 63);
VERIFY(bits_left_in_mantissa > 0);
if (num_bits > bits_left_in_mantissa)
num_bits = bits_left_in_mantissa;
bits_left_in_mantissa -= num_bits;
u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
// Now shift the bits down to put the most significant bit on the num_bits position
// this means the rest will be "virtual" zeros.
extracted_bits >>= 32;
// Now shift away the used bits and fit the result into a Word.
mantissa_bits <<= num_bits;
VERIFY(extracted_bits <= NumericLimits<Word>::max());
return static_cast<Word>(extracted_bits);
};
auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
Word bigint_word = words()[next_bigint_word - 1];
Word double_word = get_next_value_bits(bits_in_next_bigint_word);
// For the first bit we have to align it with the top bit of bigint
// and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
double_word >>= 32 - bits_in_next_bigint_word;
if (bigint_word < double_word)
return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
if (bigint_word > double_word)
return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
--next_bigint_word;
bits_in_next_bigint_word = UnsignedBigInteger::BITS_IN_WORD;
}
// If there are still bits left in bigint than any non zero bit means it has greater magnitude.
if (next_bigint_word > 0) {
VERIFY(bits_left_in_mantissa == 0);
while (next_bigint_word > 0) {
if (words()[next_bigint_word - 1] != 0)
return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
--next_bigint_word;
}
} else if (bits_left_in_mantissa > 0) {
VERIFY(next_bigint_word == 0);
// Similarly if there are still any bits set in the mantissa it has greater magnitude.
if (mantissa_bits != 0)
return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
}
// Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
return CompareResult::DoubleEqualsBigInt;
}
}

View file

@ -140,13 +140,7 @@ public:
[[nodiscard]] bool operator<(UnsignedBigInteger const& other) const;
[[nodiscard]] bool operator>(UnsignedBigInteger const& other) const;
enum class CompareResult {
DoubleEqualsBigInt,
DoubleLessThanBigInt,
DoubleGreaterThanBigInt
};
[[nodiscard]] CompareResult compare_to_double(double) const;
[[nodiscard]] UnsignedBigInteger::CompareResult compare_to_double(double) const;
private:
void ensure_sign_is_valid()

View file

@ -602,6 +602,151 @@ bool UnsignedBigInteger::operator>=(UnsignedBigInteger const& other) const
return *this > other || *this == other;
}
UnsignedBigInteger::CompareResult UnsignedBigInteger::compare_to_double(double value) const
{
VERIFY(!isnan(value));
if (isinf(value)) {
bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
}
bool value_is_negative = value < 0;
if (value_is_negative)
return CompareResult::DoubleLessThanBigInt;
// Value is zero.
if (value == 0.0) {
VERIFY(!value_is_negative);
// Either we are also zero or value is certainly less than us.
return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
}
// If value is not zero but we are, value must be greater.
if (is_zero())
return CompareResult::DoubleGreaterThanBigInt;
constexpr u64 mantissa_size = 52;
constexpr u64 exponent_size = 11;
constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1;
union FloatExtractor {
struct {
unsigned long long mantissa : mantissa_size;
unsigned exponent : exponent_size;
unsigned sign : 1;
};
double d;
} extractor;
extractor.d = value;
// Value cannot be negative at this point.
VERIFY(extractor.sign == 0);
// Exponent cannot be all set, as then we must be NaN or infinity.
VERIFY(extractor.exponent != (1 << exponent_size) - 1);
i32 real_exponent = extractor.exponent - exponent_bias;
if (real_exponent < 0) {
// value is less than 1, and we cannot be zero so value must be less.
return CompareResult::DoubleLessThanBigInt;
}
u64 bigint_bits_needed = one_based_index_of_highest_set_bit();
VERIFY(bigint_bits_needed > 0);
// Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
// `exponent - bias + 1` bit to represent doubles value,
// for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
// `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
u32 double_bits_needed = real_exponent + 1;
// If we need more bits to represent us, we must be of greater value.
if (bigint_bits_needed > double_bits_needed)
return CompareResult::DoubleLessThanBigInt;
// If we need less bits to represent us, we must be of less value.
if (bigint_bits_needed < double_bits_needed)
return CompareResult::DoubleGreaterThanBigInt;
u64 mantissa_bits = extractor.mantissa;
// We add the bit which represents the 1. of the double value calculation.
constexpr u64 mantissa_extended_bit = 1ull << mantissa_size;
mantissa_bits |= mantissa_extended_bit;
// Now we shift value to the left virtually, with `exponent - bias` steps
// we then pretend both it and the big int are extended with virtual zeros.
auto next_bigint_word = (BITS_IN_WORD - 1 + bigint_bits_needed) / BITS_IN_WORD;
VERIFY(next_bigint_word == trimmed_length());
auto msb_in_top_word_index = (bigint_bits_needed - 1) % BITS_IN_WORD;
VERIFY(msb_in_top_word_index == (BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
// We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
mantissa_bits <<= 64 - (mantissa_size + 1);
auto bits_left_in_mantissa = mantissa_size + 1;
auto get_next_value_bits = [&](size_t num_bits) -> Word {
VERIFY(num_bits < 63);
VERIFY(bits_left_in_mantissa > 0);
if (num_bits > bits_left_in_mantissa)
num_bits = bits_left_in_mantissa;
bits_left_in_mantissa -= num_bits;
u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
// Now shift the bits down to put the most significant bit on the num_bits position
// this means the rest will be "virtual" zeros.
extracted_bits >>= 32;
// Now shift away the used bits and fit the result into a Word.
mantissa_bits <<= num_bits;
VERIFY(extracted_bits <= NumericLimits<Word>::max());
return static_cast<Word>(extracted_bits);
};
auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
Word bigint_word = words()[next_bigint_word - 1];
Word double_word = get_next_value_bits(bits_in_next_bigint_word);
// For the first bit we have to align it with the top bit of bigint
// and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
double_word >>= 32 - bits_in_next_bigint_word;
if (bigint_word < double_word)
return CompareResult::DoubleGreaterThanBigInt;
if (bigint_word > double_word)
return CompareResult::DoubleLessThanBigInt;
--next_bigint_word;
bits_in_next_bigint_word = BITS_IN_WORD;
}
// If there are still bits left in bigint than any non zero bit means it has greater value.
if (next_bigint_word > 0) {
VERIFY(bits_left_in_mantissa == 0);
while (next_bigint_word > 0) {
if (words()[next_bigint_word - 1] != 0)
return CompareResult::DoubleLessThanBigInt;
--next_bigint_word;
}
} else if (bits_left_in_mantissa > 0) {
VERIFY(next_bigint_word == 0);
// Similarly if there are still any bits set in the mantissa it has greater value.
if (mantissa_bits != 0)
return CompareResult::DoubleGreaterThanBigInt;
}
// Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
return CompareResult::DoubleEqualsBigInt;
}
}
ErrorOr<void> AK::Formatter<Crypto::UnsignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::UnsignedBigInteger const& value)

View file

@ -121,6 +121,14 @@ public:
[[nodiscard]] bool operator>(UnsignedBigInteger const& other) const;
[[nodiscard]] bool operator>=(UnsignedBigInteger const& other) const;
enum class CompareResult {
DoubleEqualsBigInt,
DoubleLessThanBigInt,
DoubleGreaterThanBigInt
};
[[nodiscard]] CompareResult compare_to_double(double) const;
private:
friend class UnsignedBigIntegerAlgorithms;
// Little endian

View file

@ -557,7 +557,7 @@ ThrowCompletionOr<NanosecondsToDaysResult> nanoseconds_to_days(VM& vm, Crypto::S
// 23. If abs(nanoseconds) ≥ abs(dayLengthNs), throw a RangeError exception.
auto nanoseconds_absolute = nanoseconds.is_negative() ? nanoseconds.negated_value() : nanoseconds;
auto compare_result = nanoseconds_absolute.compare_to_double(fabs(day_length_ns.to_double()));
if (compare_result == Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt || compare_result == Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt)
if (compare_result == Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt || compare_result == Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
return vm.throw_completion<RangeError>(ErrorType::TemporalNanosecondsConvertedToRemainderOfNanosecondsLongerThanDayLength);
// 24. Return the Record { [[Days]]: days, [[Nanoseconds]]: nanoseconds, [[DayLength]]: abs(dayLengthNs) }.

View file

@ -1536,7 +1536,7 @@ ThrowCompletionOr<bool> is_loosely_equal(VM& vm, Value lhs, Value rhs)
auto& number_side = lhs.is_number() ? lhs : rhs;
auto& bigint_side = lhs.is_number() ? rhs : lhs;
return bigint_side.as_bigint().big_integer().compare_to_double(number_side.as_double()) == Crypto::SignedBigInteger::CompareResult::DoubleEqualsBigInt;
return bigint_side.as_bigint().big_integer().compare_to_double(number_side.as_double()) == Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt;
}
// 14. Return false.
@ -1635,10 +1635,10 @@ ThrowCompletionOr<TriState> is_less_than(VM& vm, Value lhs, Value rhs, bool left
VERIFY(!x_numeric.is_nan() && !y_numeric.is_nan());
if (x_numeric.is_number()) {
x_lower_than_y = y_numeric.as_bigint().big_integer().compare_to_double(x_numeric.as_double())
== Crypto::SignedBigInteger::CompareResult::DoubleLessThanBigInt;
== Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
} else {
x_lower_than_y = x_numeric.as_bigint().big_integer().compare_to_double(y_numeric.as_double())
== Crypto::SignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
== Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
}
if (x_lower_than_y)
return TriState::True;