LibGfx: AntiAliasingPainter::draw_circle/fill_rect_with_rounded_corners

Follows the efficient algorithm from this paper:
https://cs.uwaterloo.ca/research/tr/1984/CS-84-38.pdf

Can be extended ellipses in future.
This commit is contained in:
MacDue 2022-03-10 02:21:02 +00:00 committed by Andreas Kling
parent 913374163c
commit 51e54ab1ba
Notes: sideshowbarker 2024-07-17 17:12:44 +09:00
4 changed files with 238 additions and 4 deletions

View file

@ -1,5 +1,6 @@
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
* Copyright (c) 2022, Ben Maxwell <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
@ -169,3 +170,227 @@ void Gfx::AntiAliasingPainter::draw_cubic_bezier_curve(const FloatPoint& control
draw_line(fp1, fp2, color, thickness, style);
});
}
void Gfx::AntiAliasingPainter::draw_circle(IntPoint center, int radius, Color color)
{
/*
Algorithm from: https://cs.uwaterloo.ca/research/tr/1984/CS-84-38.pdf
Inline comments are from the paper.
*/
// TODO: Generalize to ellipses (see paper)
// These happen to be the same here, but are treated separately in the paper:
// intensity is the fill alpha
const int intensity = color.alpha();
// 0 to subpixel_resolution is the range of alpha values for the circle edges
const int subpixel_resolution = intensity;
// Note: Variable names below are based off the paper
// Current pixel address
int i = 0;
int q = radius;
// 1st and 2nd order differences of y
int delta_y = 0;
int delta2_y = 0;
// Exact and predicted values of f(i) -- the circle equation scaled by subpixel_resolution
int y = subpixel_resolution * radius;
int y_hat = 0;
// The value of f(i)*f(i)
int f_squared = y * y;
// 1st and 2nd order differences of f(i)*f(i)
int delta_f_squared = subpixel_resolution * subpixel_resolution;
int delta2_f_squared = -delta_f_squared - delta_f_squared;
// edge_intersection_area/subpixel_resolution = percentage of pixel intersected by circle
// (aka the alpha for the pixel)
int edge_intersection_area = 0;
int old_area = edge_intersection_area;
auto predict = [&] {
delta_y += delta2_y;
// y_hat is the predicted value of f(i)
y_hat = y + delta_y;
};
auto minimize = [&] {
// Initialize the minimization
delta_f_squared += delta2_f_squared;
f_squared += delta_f_squared;
int min_squared_error = y_hat * y_hat - f_squared;
int prediction_overshot = 1;
y = y_hat;
// Force error negative
if (min_squared_error > 0) {
min_squared_error = -min_squared_error;
prediction_overshot = -1;
}
// Minimize
int previous_error = min_squared_error;
while (min_squared_error < 0) {
y += prediction_overshot;
previous_error = min_squared_error;
min_squared_error += y + y - prediction_overshot;
}
if (min_squared_error + previous_error > 0)
y -= prediction_overshot;
};
auto correct = [&] {
int error = y - y_hat;
delta2_y += error;
delta_y += error;
};
auto pixel = [&](int x, int y, int alpha) {
if (alpha <= 0 || alpha > 255)
return;
auto pixel_colour = color;
pixel_colour.set_alpha(alpha);
m_underlying_painter.set_pixel(center + IntPoint { x, y }, pixel_colour, true);
};
auto fill = [&](int x, int ymax, int ymin, int alpha) {
while (ymin <= ymax) {
pixel(x, ymin, alpha);
ymin += 1;
}
};
auto eight_pixel = [&](int x, int y, int alpha) {
pixel(x, y, alpha);
pixel(x, -y - 1, alpha);
pixel(-x - 1, -y - 1, alpha);
pixel(-x - 1, y, alpha);
pixel(y, x, alpha);
pixel(y, -x - 1, alpha);
pixel(-y - 1, -x - 1, alpha);
pixel(-y - 1, x, alpha);
};
while (i < q) {
predict();
minimize();
correct();
old_area = edge_intersection_area;
edge_intersection_area += delta_y;
if (edge_intersection_area >= 0) {
// Single pixel on perimeter
eight_pixel(i, q, (edge_intersection_area + old_area) / 2);
fill(i, q - 1, -q, intensity);
fill(-i - 1, q - 1, -q, intensity);
} else {
// Two pixels on perimeter
edge_intersection_area += subpixel_resolution;
eight_pixel(i, q, old_area / 2);
q -= 1;
fill(i, q - 1, -q, intensity);
fill(-i - 1, q - 1, -q, intensity);
if (i < q) {
// Haven't gone below the diagonal
eight_pixel(i, q, (edge_intersection_area + subpixel_resolution) / 2);
fill(q, i - 1, -i, intensity);
fill(-q - 1, i - 1, -i, intensity);
} else {
// Went below the diagonal, fix edge_intersection_area for final pixels
edge_intersection_area += subpixel_resolution;
}
}
i += 1;
}
// Fill in 4 remaning pixels
int alpha = edge_intersection_area / 2;
pixel(q, q, alpha);
pixel(-q - 1, q, alpha);
pixel(-q - 1, -q - 1, alpha);
pixel(q, -q - 1, alpha);
}
void Gfx::AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius)
{
fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius);
}
void Gfx::AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius)
{
if (!top_left_radius && !top_right_radius && !bottom_right_radius && !bottom_left_radius)
return m_underlying_painter.fill_rect(a_rect, color);
if (color.alpha() == 0)
return;
IntPoint top_left_corner {
a_rect.x() + top_left_radius,
a_rect.y() + top_left_radius,
};
IntPoint top_right_corner {
a_rect.x() + a_rect.width() - top_right_radius,
a_rect.y() + top_right_radius,
};
IntPoint bottom_right_corner {
a_rect.x() + bottom_left_radius,
a_rect.y() + a_rect.height() - bottom_right_radius
};
IntPoint bottom_left_corner {
a_rect.x() + a_rect.width() - bottom_left_radius,
a_rect.y() + a_rect.height() - bottom_left_radius
};
IntRect top_rect {
a_rect.x() + top_left_radius,
a_rect.y(),
a_rect.width() - top_left_radius - top_right_radius,
top_left_radius
};
IntRect right_rect {
a_rect.x() + a_rect.width() - top_right_radius,
a_rect.y() + top_right_radius,
top_right_radius,
a_rect.height() - top_right_radius - bottom_right_radius
};
IntRect bottom_rect {
a_rect.x() + bottom_left_radius,
a_rect.y() + a_rect.height() - bottom_right_radius,
a_rect.width() - bottom_left_radius - bottom_right_radius,
bottom_right_radius
};
IntRect left_rect {
a_rect.x(),
a_rect.y() + top_left_radius,
bottom_left_radius,
a_rect.height() - top_left_radius - bottom_left_radius
};
IntRect inner = {
left_rect.x() + left_rect.width(),
left_rect.y(),
a_rect.width() - left_rect.width() - right_rect.width(),
a_rect.height() - top_rect.height() - bottom_rect.height()
};
m_underlying_painter.fill_rect(top_rect, color);
m_underlying_painter.fill_rect(right_rect, color);
m_underlying_painter.fill_rect(bottom_rect, color);
m_underlying_painter.fill_rect(left_rect, color);
m_underlying_painter.fill_rect(inner, color);
// FIXME: Don't draw a whole circle each time
if (top_left_radius)
draw_circle(top_left_corner, top_left_radius, color);
if (top_right_radius)
draw_circle(top_right_corner, top_right_radius, color);
if (bottom_left_radius)
draw_circle(bottom_left_corner, bottom_left_radius, color);
if (bottom_right_radius)
draw_circle(bottom_right_corner, bottom_right_radius, color);
}

View file

@ -28,6 +28,10 @@ public:
void translate(float dx, float dy) { m_transform.translate(dx, dy); }
void translate(FloatPoint const& delta) { m_transform.translate(delta); }
void draw_circle(IntPoint center, int radius, Color);
void fill_rect_with_rounded_corners(IntRect const&, Color, int radius);
void fill_rect_with_rounded_corners(IntRect const&, Color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius);
private:
enum class AntiAliasPolicy {
OnlyEnds,

View file

@ -1683,7 +1683,7 @@ void Painter::draw_text(Function<void(IntRect const&, Utf8CodePointIterator&)> d
});
}
void Painter::set_pixel(IntPoint const& p, Color color)
void Painter::set_pixel(IntPoint const& p, Color color, bool blend)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
@ -1691,7 +1691,12 @@ void Painter::set_pixel(IntPoint const& p, Color color)
point.translate_by(state().translation);
if (!clip_rect().contains(point))
return;
m_target->scanline(point.y())[point.x()] = color.value();
auto& dst = m_target->scanline(point.y())[point.x()];
if (!blend) {
dst = color.value();
} else {
dst = Color::from_argb(dst).blend(color).value();
}
}
ALWAYS_INLINE void Painter::set_physical_pixel_with_draw_op(u32& pixel, Color const& color)

View file

@ -57,8 +57,8 @@ public:
void draw_scaled_bitmap(IntRect const& dst_rect, Gfx::Bitmap const&, FloatRect const& src_rect, float opacity = 1.0f, ScalingMode = ScalingMode::NearestNeighbor);
void draw_triangle(IntPoint const&, IntPoint const&, IntPoint const&, Color);
void draw_ellipse_intersecting(IntRect const&, Color, int thickness = 1);
void set_pixel(IntPoint const&, Color);
void set_pixel(int x, int y, Color color) { set_pixel({ x, y }, color); }
void set_pixel(IntPoint const&, Color, bool blend = false);
void set_pixel(int x, int y, Color color, bool blend = false) { set_pixel({ x, y }, color, blend); }
void draw_line(IntPoint const&, IntPoint const&, Color, int thickness = 1, LineStyle style = LineStyle::Solid, Color alternate_color = Color::Transparent);
void draw_triangle_wave(IntPoint const&, IntPoint const&, Color color, int amplitude, int thickness = 1);
void draw_quadratic_bezier_curve(IntPoint const& control_point, IntPoint const&, IntPoint const&, Color, int thickness = 1, LineStyle style = LineStyle::Solid);