|
@@ -0,0 +1,447 @@
|
|
|
|
+/*
|
|
|
|
+ * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
|
|
+ * All rights reserved.
|
|
|
|
+ *
|
|
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
|
|
+ * modification, are permitted provided that the following conditions are met:
|
|
|
|
+ *
|
|
|
|
+ * 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
|
+ * list of conditions and the following disclaimer.
|
|
|
|
+ *
|
|
|
|
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
+ * this list of conditions and the following disclaimer in the documentation
|
|
|
|
+ * and/or other materials provided with the distribution.
|
|
|
|
+ *
|
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
|
|
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#pragma once
|
|
|
|
+
|
|
|
|
+#include <AK/Noncopyable.h>
|
|
|
|
+#include <AK/Optional.h>
|
|
|
|
+#include <AK/Platform.h>
|
|
|
|
+#include <AK/StdLibExtras.h>
|
|
|
|
+#include <AK/Types.h>
|
|
|
|
+#include <AK/kmalloc.h>
|
|
|
|
+
|
|
|
|
+namespace AK {
|
|
|
|
+
|
|
|
|
+class BitmapView {
|
|
|
|
+public:
|
|
|
|
+ BitmapView(u8* data, size_t size)
|
|
|
|
+ : m_data(data)
|
|
|
|
+ , m_size(size)
|
|
|
|
+ {
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ size_t size() const { return m_size; }
|
|
|
|
+ size_t size_in_bytes() const { return ceil_div(m_size, static_cast<size_t>(8)); }
|
|
|
|
+ bool get(size_t index) const
|
|
|
|
+ {
|
|
|
|
+ VERIFY(index < m_size);
|
|
|
|
+ return 0 != (m_data[index / 8] & (1u << (index % 8)));
|
|
|
|
+ }
|
|
|
|
+ void set(size_t index, bool value) const
|
|
|
|
+ {
|
|
|
|
+ VERIFY(index < m_size);
|
|
|
|
+ if (value)
|
|
|
|
+ m_data[index / 8] |= static_cast<u8>((1u << (index % 8)));
|
|
|
|
+ else
|
|
|
|
+ m_data[index / 8] &= static_cast<u8>(~(1u << (index % 8)));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ size_t count_slow(bool value) const
|
|
|
|
+ {
|
|
|
|
+ return count_in_range(0, m_size, value);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ size_t count_in_range(size_t start, size_t len, bool value) const
|
|
|
|
+ {
|
|
|
|
+ VERIFY(start < m_size);
|
|
|
|
+ VERIFY(start + len <= m_size);
|
|
|
|
+ if (len == 0)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ static const u8 bitmask_first_byte[8] = { 0xFF, 0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80 };
|
|
|
|
+ static const u8 bitmask_last_byte[8] = { 0x0, 0x1, 0x3, 0x7, 0xF, 0x1F, 0x3F, 0x7F };
|
|
|
|
+
|
|
|
|
+ size_t count;
|
|
|
|
+ const u8* first = &m_data[start / 8];
|
|
|
|
+ const u8* last = &m_data[(start + len) / 8];
|
|
|
|
+ u8 byte = *first;
|
|
|
|
+ byte &= bitmask_first_byte[start % 8];
|
|
|
|
+ if (first == last) {
|
|
|
|
+ byte &= bitmask_last_byte[(start + len) % 8];
|
|
|
|
+ count = __builtin_popcount(byte);
|
|
|
|
+ } else {
|
|
|
|
+ count = __builtin_popcount(byte);
|
|
|
|
+ byte = *last;
|
|
|
|
+ byte &= bitmask_last_byte[(start + len) % 8];
|
|
|
|
+ count += __builtin_popcount(byte);
|
|
|
|
+ if (++first < last) {
|
|
|
|
+ const u32* ptr32 = (const u32*)(((FlatPtr)first + sizeof(u32) - 1) & ~(sizeof(u32) - 1));
|
|
|
|
+ if ((const u8*)ptr32 > last)
|
|
|
|
+ ptr32 = (const u32*)last;
|
|
|
|
+ while (first < (const u8*)ptr32) {
|
|
|
|
+ count += __builtin_popcount(*first);
|
|
|
|
+ first++;
|
|
|
|
+ }
|
|
|
|
+ const u32* last32 = (const u32*)((FlatPtr)last & ~(sizeof(u32) - 1));
|
|
|
|
+ while (ptr32 < last32) {
|
|
|
|
+ count += __builtin_popcountl(*ptr32);
|
|
|
|
+ ptr32++;
|
|
|
|
+ }
|
|
|
|
+ for (first = (const u8*)ptr32; first < last; first++)
|
|
|
|
+ count += __builtin_popcount(*first);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (!value)
|
|
|
|
+ count = len - count;
|
|
|
|
+ return count;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ bool is_null() const { return !m_data; }
|
|
|
|
+
|
|
|
|
+ u8* data() { return m_data; }
|
|
|
|
+ const u8* data() const { return m_data; }
|
|
|
|
+
|
|
|
|
+ template<bool VALUE>
|
|
|
|
+ void set_range(size_t start, size_t len)
|
|
|
|
+ {
|
|
|
|
+ VERIFY(start < m_size);
|
|
|
|
+ VERIFY(start + len <= m_size);
|
|
|
|
+ if (len == 0)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ static const u8 bitmask_first_byte[8] = { 0xFF, 0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80 };
|
|
|
|
+ static const u8 bitmask_last_byte[8] = { 0x0, 0x1, 0x3, 0x7, 0xF, 0x1F, 0x3F, 0x7F };
|
|
|
|
+
|
|
|
|
+ u8* first = &m_data[start / 8];
|
|
|
|
+ u8* last = &m_data[(start + len) / 8];
|
|
|
|
+ u8 byte_mask = bitmask_first_byte[start % 8];
|
|
|
|
+ if (first == last) {
|
|
|
|
+ byte_mask &= bitmask_last_byte[(start + len) % 8];
|
|
|
|
+ if constexpr (VALUE)
|
|
|
|
+ *first |= byte_mask;
|
|
|
|
+ else
|
|
|
|
+ *first &= ~byte_mask;
|
|
|
|
+ } else {
|
|
|
|
+ if constexpr (VALUE)
|
|
|
|
+ *first |= byte_mask;
|
|
|
|
+ else
|
|
|
|
+ *first &= ~byte_mask;
|
|
|
|
+ byte_mask = bitmask_last_byte[(start + len) % 8];
|
|
|
|
+ if constexpr (VALUE)
|
|
|
|
+ *last |= byte_mask;
|
|
|
|
+ else
|
|
|
|
+ *last &= ~byte_mask;
|
|
|
|
+ if (++first < last) {
|
|
|
|
+ if constexpr (VALUE)
|
|
|
|
+ __builtin_memset(first, 0xFF, last - first);
|
|
|
|
+ else
|
|
|
|
+ __builtin_memset(first, 0x0, last - first);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ void set_range(size_t start, size_t len, bool value)
|
|
|
|
+ {
|
|
|
|
+ if (value)
|
|
|
|
+ set_range<true>(start, len);
|
|
|
|
+ else
|
|
|
|
+ set_range<false>(start, len);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ void fill(bool value)
|
|
|
|
+ {
|
|
|
|
+ __builtin_memset(m_data, value ? 0xff : 0x00, size_in_bytes());
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template<bool VALUE>
|
|
|
|
+ Optional<size_t> find_one_anywhere(size_t hint = 0) const
|
|
|
|
+ {
|
|
|
|
+ VERIFY(hint < m_size);
|
|
|
|
+ const u8* end = &m_data[m_size / 8];
|
|
|
|
+
|
|
|
|
+ for (;;) {
|
|
|
|
+ // We will use hint as what it is: a hint. Because we try to
|
|
|
|
+ // scan over entire 32 bit words, we may start searching before
|
|
|
|
+ // the hint!
|
|
|
|
+ const u32* ptr32 = (const u32*)((FlatPtr)&m_data[hint / 8] & ~(sizeof(u32) - 1));
|
|
|
|
+ if ((const u8*)ptr32 < &m_data[0]) {
|
|
|
|
+ ptr32++;
|
|
|
|
+
|
|
|
|
+ // m_data isn't aligned, check first bytes
|
|
|
|
+ size_t start_ptr32 = (const u8*)ptr32 - &m_data[0];
|
|
|
|
+ size_t i = 0;
|
|
|
|
+ u8 byte = VALUE ? 0x00 : 0xff;
|
|
|
|
+ while (i < start_ptr32 && m_data[i] == byte)
|
|
|
|
+ i++;
|
|
|
|
+ if (i < start_ptr32) {
|
|
|
|
+ byte = m_data[i];
|
|
|
|
+ if constexpr (!VALUE)
|
|
|
|
+ byte = ~byte;
|
|
|
|
+ VERIFY(byte != 0);
|
|
|
|
+ return i * 8 + __builtin_ffs(byte) - 1;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ u32 val32 = VALUE ? 0x0 : 0xffffffff;
|
|
|
|
+ const u32* end32 = (const u32*)((FlatPtr)end & ~(sizeof(u32) - 1));
|
|
|
|
+ while (ptr32 < end32 && *ptr32 == val32)
|
|
|
|
+ ptr32++;
|
|
|
|
+
|
|
|
|
+ if (ptr32 == end32) {
|
|
|
|
+ // We didn't find anything, check the remaining few bytes (if any)
|
|
|
|
+ u8 byte = VALUE ? 0x00 : 0xff;
|
|
|
|
+ size_t i = (const u8*)ptr32 - &m_data[0];
|
|
|
|
+ size_t byte_count = m_size / 8;
|
|
|
|
+ VERIFY(i <= byte_count);
|
|
|
|
+ while (i < byte_count && m_data[i] == byte)
|
|
|
|
+ i++;
|
|
|
|
+ if (i == byte_count) {
|
|
|
|
+ if (hint <= 8)
|
|
|
|
+ return {}; // We already checked from the beginning
|
|
|
|
+
|
|
|
|
+ // Try scanning before the hint
|
|
|
|
+ end = (const u8*)((FlatPtr)&m_data[hint / 8] & ~(sizeof(u32) - 1));
|
|
|
|
+ hint = 0;
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ byte = m_data[i];
|
|
|
|
+ if constexpr (!VALUE)
|
|
|
|
+ byte = ~byte;
|
|
|
|
+ VERIFY(byte != 0);
|
|
|
|
+ return i * 8 + __builtin_ffs(byte) - 1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // NOTE: We don't really care about byte ordering. We found *one*
|
|
|
|
+ // free bit, just calculate the position and return it
|
|
|
|
+ val32 = *ptr32;
|
|
|
|
+ if constexpr (!VALUE)
|
|
|
|
+ val32 = ~val32;
|
|
|
|
+ VERIFY(val32 != 0);
|
|
|
|
+ return ((const u8*)ptr32 - &m_data[0]) * 8 + __builtin_ffsl(val32) - 1;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Optional<size_t> find_one_anywhere_set(size_t hint = 0) const
|
|
|
|
+ {
|
|
|
|
+ return find_one_anywhere<true>(hint);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Optional<size_t> find_one_anywhere_unset(size_t hint = 0) const
|
|
|
|
+ {
|
|
|
|
+ return find_one_anywhere<false>(hint);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template<bool VALUE>
|
|
|
|
+ Optional<size_t> find_first() const
|
|
|
|
+ {
|
|
|
|
+ size_t byte_count = m_size / 8;
|
|
|
|
+ size_t i = 0;
|
|
|
|
+
|
|
|
|
+ u8 byte = VALUE ? 0x00 : 0xff;
|
|
|
|
+ while (i < byte_count && m_data[i] == byte)
|
|
|
|
+ i++;
|
|
|
|
+ if (i == byte_count)
|
|
|
|
+ return {};
|
|
|
|
+
|
|
|
|
+ byte = m_data[i];
|
|
|
|
+ if constexpr (!VALUE)
|
|
|
|
+ byte = ~byte;
|
|
|
|
+ VERIFY(byte != 0);
|
|
|
|
+ return i * 8 + __builtin_ffs(byte) - 1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Optional<size_t> find_first_set() const { return find_first<true>(); }
|
|
|
|
+ Optional<size_t> find_first_unset() const { return find_first<false>(); }
|
|
|
|
+
|
|
|
|
+ // The function will return the next range of unset bits starting from the
|
|
|
|
+ // @from value.
|
|
|
|
+ // @from: the position from which the search starts. The var will be
|
|
|
|
+ // changed and new value is the offset of the found block.
|
|
|
|
+ // @min_length: minimum size of the range which will be returned.
|
|
|
|
+ // @max_length: maximum size of the range which will be returned.
|
|
|
|
+ // This is used to increase performance, since the range of
|
|
|
|
+ // unset bits can be long, and we don't need the while range,
|
|
|
|
+ // so we can stop when we've reached @max_length.
|
|
|
|
+ inline Optional<size_t> find_next_range_of_unset_bits(size_t& from, size_t min_length = 1, size_t max_length = max_size) const
|
|
|
|
+ {
|
|
|
|
+ if (min_length > max_length) {
|
|
|
|
+ return {};
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ u32* bitmap32 = (u32*)m_data;
|
|
|
|
+
|
|
|
|
+ // Calculating the start offset.
|
|
|
|
+ size_t start_bucket_index = from / 32;
|
|
|
|
+ size_t start_bucket_bit = from % 32;
|
|
|
|
+
|
|
|
|
+ size_t* start_of_free_chunks = &from;
|
|
|
|
+ size_t free_chunks = 0;
|
|
|
|
+
|
|
|
|
+ for (size_t bucket_index = start_bucket_index; bucket_index < m_size / 32; ++bucket_index) {
|
|
|
|
+ if (bitmap32[bucket_index] == 0xffffffff) {
|
|
|
|
+ // Skip over completely full bucket of size 32.
|
|
|
|
+ if (free_chunks >= min_length) {
|
|
|
|
+ return min(free_chunks, max_length);
|
|
|
|
+ }
|
|
|
|
+ free_chunks = 0;
|
|
|
|
+ start_bucket_bit = 0;
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ if (bitmap32[bucket_index] == 0x0) {
|
|
|
|
+ // Skip over completely empty bucket of size 32.
|
|
|
|
+ if (free_chunks == 0) {
|
|
|
|
+ *start_of_free_chunks = bucket_index * 32;
|
|
|
|
+ }
|
|
|
|
+ free_chunks += 32;
|
|
|
|
+ if (free_chunks >= max_length) {
|
|
|
|
+ return max_length;
|
|
|
|
+ }
|
|
|
|
+ start_bucket_bit = 0;
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ u32 bucket = bitmap32[bucket_index];
|
|
|
|
+ u8 viewed_bits = start_bucket_bit;
|
|
|
|
+ u32 trailing_zeroes = 0;
|
|
|
|
+
|
|
|
|
+ bucket >>= viewed_bits;
|
|
|
|
+ start_bucket_bit = 0;
|
|
|
|
+
|
|
|
|
+ while (viewed_bits < 32) {
|
|
|
|
+ if (bucket == 0) {
|
|
|
|
+ if (free_chunks == 0) {
|
|
|
|
+ *start_of_free_chunks = bucket_index * 32 + viewed_bits;
|
|
|
|
+ }
|
|
|
|
+ free_chunks += 32 - viewed_bits;
|
|
|
|
+ viewed_bits = 32;
|
|
|
|
+ } else {
|
|
|
|
+ trailing_zeroes = count_trailing_zeroes_32(bucket);
|
|
|
|
+ bucket >>= trailing_zeroes;
|
|
|
|
+
|
|
|
|
+ if (free_chunks == 0) {
|
|
|
|
+ *start_of_free_chunks = bucket_index * 32 + viewed_bits;
|
|
|
|
+ }
|
|
|
|
+ free_chunks += trailing_zeroes;
|
|
|
|
+ viewed_bits += trailing_zeroes;
|
|
|
|
+
|
|
|
|
+ if (free_chunks >= min_length) {
|
|
|
|
+ return min(free_chunks, max_length);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Deleting trailing ones.
|
|
|
|
+ u32 trailing_ones = count_trailing_zeroes_32(~bucket);
|
|
|
|
+ bucket >>= trailing_ones;
|
|
|
|
+ viewed_bits += trailing_ones;
|
|
|
|
+ free_chunks = 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (free_chunks < min_length) {
|
|
|
|
+ size_t first_trailing_bit = (m_size / 32) * 32;
|
|
|
|
+ size_t trailing_bits = size() % 32;
|
|
|
|
+ for (size_t i = 0; i < trailing_bits; ++i) {
|
|
|
|
+ if (!get(first_trailing_bit + i)) {
|
|
|
|
+ if (!free_chunks)
|
|
|
|
+ *start_of_free_chunks = first_trailing_bit + i;
|
|
|
|
+ if (++free_chunks >= min_length)
|
|
|
|
+ return min(free_chunks, max_length);
|
|
|
|
+ } else {
|
|
|
|
+ free_chunks = 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return {};
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return min(free_chunks, max_length);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Optional<size_t> find_longest_range_of_unset_bits(size_t max_length, size_t& found_range_size) const
|
|
|
|
+ {
|
|
|
|
+ size_t start = 0;
|
|
|
|
+ size_t max_region_start = 0;
|
|
|
|
+ size_t max_region_size = 0;
|
|
|
|
+
|
|
|
|
+ while (true) {
|
|
|
|
+ // Look for the next block which is bigger than currunt.
|
|
|
|
+ auto length_of_found_range = find_next_range_of_unset_bits(start, max_region_size + 1, max_length);
|
|
|
|
+ if (length_of_found_range.has_value()) {
|
|
|
|
+ max_region_start = start;
|
|
|
|
+ max_region_size = length_of_found_range.value();
|
|
|
|
+ start += max_region_size;
|
|
|
|
+ } else {
|
|
|
|
+ // No ranges which are bigger than current were found.
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ found_range_size = max_region_size;
|
|
|
|
+ if (max_region_size) {
|
|
|
|
+ return max_region_start;
|
|
|
|
+ }
|
|
|
|
+ return {};
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Optional<size_t> find_first_fit(size_t minimum_length) const
|
|
|
|
+ {
|
|
|
|
+ size_t start = 0;
|
|
|
|
+ auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, minimum_length);
|
|
|
|
+ if (length_of_found_range.has_value()) {
|
|
|
|
+ return start;
|
|
|
|
+ }
|
|
|
|
+ return {};
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Optional<size_t> find_best_fit(size_t minimum_length) const
|
|
|
|
+ {
|
|
|
|
+ size_t start = 0;
|
|
|
|
+ size_t best_region_start = 0;
|
|
|
|
+ size_t best_region_size = max_size;
|
|
|
|
+ bool found = false;
|
|
|
|
+
|
|
|
|
+ while (true) {
|
|
|
|
+ // Look for the next block which is bigger than requested length.
|
|
|
|
+ auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, best_region_size);
|
|
|
|
+ if (length_of_found_range.has_value()) {
|
|
|
|
+ if (best_region_size > length_of_found_range.value() || !found) {
|
|
|
|
+ best_region_start = start;
|
|
|
|
+ best_region_size = length_of_found_range.value();
|
|
|
|
+ found = true;
|
|
|
|
+ }
|
|
|
|
+ start += length_of_found_range.value();
|
|
|
|
+ } else {
|
|
|
|
+ // There are no ranges which can fit requested length.
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (found) {
|
|
|
|
+ return best_region_start;
|
|
|
|
+ }
|
|
|
|
+ return {};
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ static constexpr size_t max_size = 0xffffffff;
|
|
|
|
+
|
|
|
|
+private:
|
|
|
|
+ u8* m_data { nullptr };
|
|
|
|
+ size_t m_size { 0 };
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+using AK::BitmapView;
|