Move the scheduler code to its own class.

This is very mechanical.
This commit is contained in:
Andreas Kling 2018-11-07 22:15:02 +01:00
parent 6304c771dd
commit 39d2fcbbee
Notes: sideshowbarker 2024-07-19 18:32:14 +09:00
8 changed files with 336 additions and 318 deletions

View file

@ -20,7 +20,8 @@ KERNEL_OBJS = \
ProcFileSystem.o \
RTC.o \
TTY.o \
VirtualConsole.o
VirtualConsole.o \
Scheduler.o
VFS_OBJS = \
../VirtualFileSystem/DiskDevice.o \

View file

@ -16,23 +16,13 @@
#include <AK/StdLib.h>
#include <LibC/signal_numbers.h>
#include "Syscall.h"
#include "Scheduler.h"
//#define DEBUG_IO
//#define TASK_DEBUG
//#define FORK_DEBUG
//#define SCHEDULER_DEBUG
#define COOL_GLOBALS
#define MAX_PROCESS_GIDS 32
static const dword scheduler_time_slice = 5; // *10 = 50ms
#ifdef COOL_GLOBALS
struct CoolGlobals {
dword current_pid;
};
CoolGlobals* g_cool_globals;
#endif
// FIXME: Only do a single validation for accesses that don't span multiple pages.
// FIXME: Some places pass strlen(arg1) as arg2. This doesn't seem entirely perfect..
#define VALIDATE_USER_READ(b, s) \
@ -51,12 +41,9 @@ CoolGlobals* g_cool_globals;
static const DWORD defaultStackSize = 16384;
Process* current;
Process* s_colonel_process;
static pid_t next_pid;
static InlineLinkedList<Process>* s_processes;
static InlineLinkedList<Process>* s_dead_processes;
InlineLinkedList<Process>* g_processes;
InlineLinkedList<Process>* g_dead_processes;
static String* s_hostname;
static String& hostnameStorage(InterruptDisabler&)
@ -71,63 +58,26 @@ static String getHostname()
return hostnameStorage(disabler).isolatedCopy();
}
static bool contextSwitch(Process*);
static void redo_colonel_process_tss()
{
if (!s_colonel_process->selector())
s_colonel_process->setSelector(gdt_alloc_entry());
auto& tssDescriptor = getGDTEntry(s_colonel_process->selector());
tssDescriptor.setBase(&s_colonel_process->tss());
tssDescriptor.setLimit(0xffff);
tssDescriptor.dpl = 0;
tssDescriptor.segment_present = 1;
tssDescriptor.granularity = 1;
tssDescriptor.zero = 0;
tssDescriptor.operation_size = 1;
tssDescriptor.descriptor_type = 0;
tssDescriptor.type = 9;
flushGDT();
}
void Process::prepare_for_iret_to_new_process()
{
redo_colonel_process_tss();
s_colonel_process->tss().backlink = current->selector();
load_task_register(s_colonel_process->selector());
}
static void hlt_loop()
{
for (;;) {
asm volatile("hlt");
}
}
CoolGlobals* g_cool_globals;
void Process::initialize()
{
#ifdef COOL_GLOBALS
g_cool_globals = (CoolGlobals*)0x1000;
g_cool_globals = reinterpret_cast<CoolGlobals*>(0x1000);
#endif
current = nullptr;
next_pid = 0;
s_processes = new InlineLinkedList<Process>;
s_dead_processes = new InlineLinkedList<Process>;
s_colonel_process = Process::create_kernel_process(hlt_loop, "colonel");
g_processes = new InlineLinkedList<Process>;
g_dead_processes = new InlineLinkedList<Process>;
s_hostname = new String("birx");
redo_colonel_process_tss();
load_task_register(s_colonel_process->selector());
Scheduler::initialize();
}
Vector<Process*> Process::allProcesses()
{
InterruptDisabler disabler;
Vector<Process*> processes;
processes.ensureCapacity(s_processes->sizeSlow());
for (auto* process = s_processes->head(); process; process = process->next())
processes.ensureCapacity(g_processes->sizeSlow());
for (auto* process = g_processes->head(); process; process = process->next())
processes.append(process);
return processes;
}
@ -261,7 +211,7 @@ Process* Process::fork(RegisterDump& regs)
ProcFileSystem::the().addProcess(*child);
s_processes->prepend(child);
g_processes->prepend(child);
system.nprocess++;
#ifdef TASK_DEBUG
kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip);
@ -337,7 +287,7 @@ int Process::exec(const String& path, Vector<String>&& arguments, Vector<String>
InterruptDisabler disabler;
if (current == this)
load_task_register(s_colonel_process->selector());
Scheduler::prepare_to_modify_own_tss();
m_name = parts.takeLast();
@ -368,11 +318,11 @@ int Process::exec(const String& path, Vector<String>&& arguments, Vector<String>
m_initialEnvironment = move(environment);
#ifdef TASK_DEBUG
kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), filename, m_tss.eip);
kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), m_tss.eip);
#endif
if (current == this)
sched_yield();
Scheduler::yield();
return 0;
}
@ -479,7 +429,7 @@ Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid,
ProcFileSystem::the().addProcess(*process);
s_processes->prepend(process);
g_processes->prepend(process);
system.nprocess++;
#ifdef TASK_DEBUG
kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
@ -533,7 +483,7 @@ Process* Process::create_kernel_process(void (*e)(), String&& name)
if (process->pid() != 0) {
InterruptDisabler disabler;
s_processes->prepend(process);
g_processes->prepend(process);
system.nprocess++;
ProcFileSystem::the().addProcess(*process);
#ifdef TASK_DEBUG
@ -698,11 +648,8 @@ void Process::sys$exit(int status)
m_termination_status = status;
m_termination_signal = 0;
if (!scheduleNewProcess()) {
kprintf("Process::sys$exit: Failed to schedule a new process :(\n");
HANG;
}
switchNow();
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
void Process::terminate_due_to_signal(byte signal)
@ -865,13 +812,13 @@ void Process::dispatch_signal(byte signal)
void Process::sys$sigreturn()
{
InterruptDisabler disabler;
Scheduler::prepare_to_modify_own_tss();
m_tss = m_tss_to_resume_kernel;
#ifdef SIGNAL_DEBUG
dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid());
dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip);
#endif
load_task_register(s_colonel_process->selector());
sched_yield();
Scheduler::yield();
kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid());
ASSERT_NOT_REACHED();
}
@ -887,64 +834,30 @@ void Process::crash()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(state() != Dead);
m_termination_signal = SIGSEGV;
set_state(Dead);
dumpRegions();
if (!scheduleNewProcess()) {
kprintf("Process::crash: Failed to schedule a new process :(\n");
HANG;
}
switchNow();
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
void Process::doHouseKeeping()
{
if (s_dead_processes->isEmpty())
if (g_dead_processes->isEmpty())
return;
InterruptDisabler disabler;
Process* next = nullptr;
for (auto* deadProcess = s_dead_processes->head(); deadProcess; deadProcess = next) {
for (auto* deadProcess = g_dead_processes->head(); deadProcess; deadProcess = next) {
next = deadProcess->next();
delete deadProcess;
}
s_dead_processes->clear();
}
int sched_yield()
{
if (!current) {
kprintf("PANIC: sched_yield() with !current");
HANG;
}
//kprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
InterruptDisabler disabler;
if (!scheduleNewProcess())
return 1;
//kprintf("yield() jumping to new process: %x (%s)\n", current->farPtr().selector, current->name().characters());
switchNow();
return 0;
}
void switchNow()
{
Descriptor& descriptor = getGDTEntry(current->selector());
descriptor.type = 9;
flushGDT();
asm("sti\n"
"ljmp *(%%eax)\n"
::"a"(&current->farPtr())
);
g_dead_processes->clear();
}
void Process::for_each(Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = s_processes->head(); process; process = process->next()) {
for (auto* process = g_processes->head(); process; process = process->next()) {
if (!callback(*process))
break;
}
@ -953,7 +866,7 @@ void Process::for_each(Function<bool(Process&)> callback)
void Process::for_each_in_pgrp(pid_t pgid, Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = s_processes->head(); process; process = process->next()) {
for (auto* process = g_processes->head(); process; process = process->next()) {
if (process->pgid() == pgid) {
if (!callback(*process))
break;
@ -964,7 +877,7 @@ void Process::for_each_in_pgrp(pid_t pgid, Function<bool(Process&)> callback)
void Process::for_each_in_state(State state, Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = s_processes->head(); process;) {
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->state() == state)
callback(*process);
@ -975,7 +888,7 @@ void Process::for_each_in_state(State state, Function<bool(Process&)> callback)
void Process::for_each_not_in_state(State state, Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = s_processes->head(); process;) {
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->state() != state)
callback(*process);
@ -983,187 +896,10 @@ void Process::for_each_not_in_state(State state, Function<bool(Process&)> callba
}
}
bool scheduleNewProcess()
{
ASSERT_INTERRUPTS_DISABLED();
if (!current) {
// XXX: The first ever context_switch() goes to the idle process.
// This to setup a reliable place we can return to.
return contextSwitch(Process::colonel_process());
}
// Check and unblock processes whose wait conditions have been met.
Process::for_each([] (auto& process) {
if (process.state() == Process::BlockedSleep) {
if (process.wakeupTime() <= system.uptime)
process.unblock();
return true;
}
if (process.state() == Process::BlockedWait) {
auto* waitee = Process::from_pid(process.waitee());
if (!waitee) {
kprintf("waitee %u of %s(%u) reaped before I could wait?\n", process.waitee(), process.name().characters(), process.pid());
ASSERT_NOT_REACHED();
}
if (waitee->state() == Process::Dead) {
process.m_waitee_status = (waitee->m_termination_status << 8) | waitee->m_termination_signal;
process.unblock();
waitee->set_state(Process::Forgiven);
}
return true;
}
if (process.state() == Process::BlockedRead) {
ASSERT(process.m_fdBlockedOnRead != -1);
// FIXME: Block until the amount of data wanted is available.
if (process.m_file_descriptors[process.m_fdBlockedOnRead]->hasDataAvailableForRead())
process.unblock();
return true;
}
return true;
});
// Forgive dead orphans.
// FIXME: Does this really make sense?
Process::for_each_in_state(Process::Dead, [] (auto& process) {
if (!Process::from_pid(process.ppid()))
process.set_state(Process::Forgiven);
return true;
});
// Clean up forgiven processes.
// FIXME: Do we really need this to be a separate pass over the process list?
Process::for_each_in_state(Process::Forgiven, [] (auto& process) {
s_processes->remove(&process);
s_dead_processes->append(&process);
return true;
});
// Dispatch any pending signals.
// FIXME: Do we really need this to be a separate pass over the process list?
Process::for_each_not_in_state(Process::Dead, [] (auto& process) {
if (!process.has_unmasked_pending_signals())
return true;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue. They'll be in userspace
// sooner or later and we can deliver the signal then.
// FIXME: Maybe we could check when returning from a syscall if there's a pending
// signal and dispatch it then and there? Would that be doable without the
// syscall effectively being "interrupted" despite having completed?
if (process.in_kernel() && !process.is_blocked())
return true;
process.dispatch_one_pending_signal();
if (process.is_blocked()) {
process.m_was_interrupted_while_blocked = true;
process.unblock();
}
return true;
});
#ifdef SCHEDULER_DEBUG
dbgprintf("Scheduler choices:\n");
for (auto* process = s_processes->head(); process; process = process->next()) {
//if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep)
// continue;
dbgprintf("% 12s %s(%u) @ %w:%x\n", toString(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip);
}
#endif
auto* prevHead = s_processes->head();
for (;;) {
// Move head to tail.
s_processes->append(s_processes->removeHead());
auto* process = s_processes->head();
if (process->state() == Process::Runnable || process->state() == Process::Running) {
#ifdef SCHEDULER_DEBUG
dbgprintf("switch to %s(%u)\n", process->name().characters(), process->pid());
#endif
return contextSwitch(process);
}
if (process == prevHead) {
// Back at process_head, nothing wants to run.
kprintf("Nothing wants to run!\n");
kprintf("PID OWNER STATE NSCHED NAME\n");
for (auto* process = s_processes->head(); process; process = process->next()) {
kprintf("%w %w:%w %b %w %s\n",
process->pid(),
process->uid(),
process->gid(),
process->state(),
process->timesScheduled(),
process->name().characters());
}
kprintf("Switch to kernel process @ %w:%x\n", s_colonel_process->tss().cs, s_colonel_process->tss().eip);
return contextSwitch(Process::colonel_process());
}
}
}
static bool contextSwitch(Process* t)
{
t->setTicksLeft(scheduler_time_slice);
t->didSchedule();
if (current == t)
return false;
#ifdef SCHEDULER_DEBUG
// Some sanity checking to force a crash earlier.
auto csRPL = t->tss().cs & 3;
auto ssRPL = t->tss().ss & 3;
if (csRPL != ssRPL) {
kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n",
current->name().characters(), current->pid(),
t->name().characters(), t->pid()
);
kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip);
kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp);
ASSERT(csRPL == ssRPL);
}
#endif
if (current) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current->state() == Process::Running)
current->set_state(Process::Runnable);
}
current = t;
t->set_state(Process::Running);
#ifdef COOL_GLOBALS
g_cool_globals->current_pid = t->pid();
#endif
if (!t->selector()) {
t->setSelector(gdt_alloc_entry());
auto& descriptor = getGDTEntry(t->selector());
descriptor.setBase(&t->tss());
descriptor.setLimit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
}
auto& descriptor = getGDTEntry(t->selector());
descriptor.type = 11; // Busy TSS
flushGDT();
return true;
}
Process* Process::from_pid(pid_t pid)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = s_processes->head(); process; process = process->next()) {
for (auto* process = g_processes->head(); process; process = process->next()) {
if (process->pid() == pid)
return process;
}
@ -1529,12 +1265,6 @@ void sleep(DWORD ticks)
sched_yield();
}
Process* Process::colonel_process()
{
ASSERT(s_colonel_process);
return s_colonel_process;
}
bool Process::isValidAddressForKernel(LinearAddress laddr) const
{
// We check extra carefully here since the first 4MB of the address space is identity-mapped.

View file

@ -15,6 +15,14 @@ class PageDirectory;
class Region;
class Zone;
#define COOL_GLOBALS
#ifdef COOL_GLOBALS
struct CoolGlobals {
pid_t current_pid;
};
extern CoolGlobals* g_cool_globals;
#endif
struct SignalActionData {
LinearAddress handler_or_sigaction;
dword mask { 0 };
@ -59,7 +67,6 @@ public:
bool in_kernel() const { return (m_tss.cs & 0x03) == 0; }
static Process* from_pid(pid_t);
static Process* colonel_process();
const String& name() const { return m_name; }
pid_t pid() const { return m_pid; }
@ -93,10 +100,8 @@ public:
static void for_each_in_state(State, Function<bool(Process&)>);
static void for_each_not_in_state(State, Function<bool(Process&)>);
static void prepare_for_iret_to_new_process();
bool tick() { ++m_ticks; return --m_ticksLeft; }
void setTicksLeft(DWORD t) { m_ticksLeft = t; }
void set_ticks_left(dword t) { m_ticksLeft = t; }
void setSelector(WORD s) { m_farPtr.selector = s; }
void set_state(State s) { m_state = s; }
@ -124,8 +129,8 @@ public:
int sys$lseek(int fd, off_t, int whence);
int sys$kill(pid_t pid, int sig);
int sys$geterror() { return m_error; }
void sys$exit(int status);
void sys$sigreturn();
void sys$exit(int status) NORETURN;
void sys$sigreturn() NORETURN;
pid_t sys$spawn(const char* path, const char** args, const char** envp);
pid_t sys$waitpid(pid_t, int* wstatus, int options);
void* sys$mmap(void*, size_t size);
@ -155,7 +160,7 @@ public:
static void initialize();
void crash();
void crash() NORETURN;
const TTY* tty() const { return m_tty; }
@ -163,7 +168,7 @@ public:
const Vector<RetainPtr<Region>>& regions() const { return m_regions; }
void dumpRegions();
void didSchedule() { ++m_timesScheduled; }
void did_schedule() { ++m_timesScheduled; }
dword timesScheduled() const { return m_timesScheduled; }
pid_t waitee() const { return m_waitee; }
@ -195,7 +200,7 @@ public:
private:
friend class MemoryManager;
friend bool scheduleNewProcess();
friend class Scheduler;
Process(String&& name, uid_t, gid_t, pid_t ppid, RingLevel, RetainPtr<VirtualFileSystem::Node>&& cwd = nullptr, RetainPtr<VirtualFileSystem::Node>&& executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
@ -309,10 +314,8 @@ static inline const char* toString(Process::State state)
return nullptr;
}
extern int sched_yield();
extern bool scheduleNewProcess();
extern void switchNow();
extern void block(Process::State);
extern void sleep(DWORD ticks);
extern Process* current;
extern InlineLinkedList<Process>* g_processes;
extern InlineLinkedList<Process>* g_dead_processes;

261
Kernel/Scheduler.cpp Normal file
View file

@ -0,0 +1,261 @@
#include "Scheduler.h"
#include "Process.h"
#include "system.h"
//#define SCHEDULER_DEBUG
static const dword time_slice = 5; // *10 = 50ms
Process* current;
static Process* s_colonel_process;
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
if (!current) {
// XXX: The first ever context_switch() goes to the idle process.
// This to setup a reliable place we can return to.
return context_switch(*s_colonel_process);
}
// Check and unblock processes whose wait conditions have been met.
Process::for_each([] (auto& process) {
if (process.state() == Process::BlockedSleep) {
if (process.wakeupTime() <= system.uptime)
process.unblock();
return true;
}
if (process.state() == Process::BlockedWait) {
auto* waitee = Process::from_pid(process.waitee());
if (!waitee) {
kprintf("waitee %u of %s(%u) reaped before I could wait?\n", process.waitee(), process.name().characters(), process.pid());
ASSERT_NOT_REACHED();
}
if (waitee->state() == Process::Dead) {
process.m_waitee_status = (waitee->m_termination_status << 8) | waitee->m_termination_signal;
process.unblock();
waitee->set_state(Process::Forgiven);
}
return true;
}
if (process.state() == Process::BlockedRead) {
ASSERT(process.m_fdBlockedOnRead != -1);
// FIXME: Block until the amount of data wanted is available.
if (process.m_file_descriptors[process.m_fdBlockedOnRead]->hasDataAvailableForRead())
process.unblock();
return true;
}
return true;
});
// Forgive dead orphans.
// FIXME: Does this really make sense?
Process::for_each_in_state(Process::Dead, [] (auto& process) {
if (!Process::from_pid(process.ppid()))
process.set_state(Process::Forgiven);
return true;
});
// Clean up forgiven processes.
// FIXME: Do we really need this to be a separate pass over the process list?
Process::for_each_in_state(Process::Forgiven, [] (auto& process) {
g_processes->remove(&process);
g_dead_processes->append(&process);
return true;
});
// Dispatch any pending signals.
// FIXME: Do we really need this to be a separate pass over the process list?
Process::for_each_not_in_state(Process::Dead, [] (auto& process) {
if (!process.has_unmasked_pending_signals())
return true;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue. They'll be in userspace
// sooner or later and we can deliver the signal then.
// FIXME: Maybe we could check when returning from a syscall if there's a pending
// signal and dispatch it then and there? Would that be doable without the
// syscall effectively being "interrupted" despite having completed?
if (process.in_kernel() && !process.is_blocked())
return true;
process.dispatch_one_pending_signal();
if (process.is_blocked()) {
process.m_was_interrupted_while_blocked = true;
process.unblock();
}
return true;
});
#ifdef SCHEDULER_DEBUG
dbgprintf("Scheduler choices:\n");
for (auto* process = g_processes->head(); process; process = process->next()) {
//if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep)
// continue;
dbgprintf("% 12s %s(%u) @ %w:%x\n", toString(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip);
}
#endif
auto* prevHead = g_processes->head();
for (;;) {
// Move head to tail.
g_processes->append(g_processes->removeHead());
auto* process = g_processes->head();
if (process->state() == Process::Runnable || process->state() == Process::Running) {
#ifdef SCHEDULER_DEBUG
dbgprintf("switch to %s(%u)\n", process->name().characters(), process->pid());
#endif
return context_switch(*process);
}
if (process == prevHead) {
// Back at process_head, nothing wants to run.
kprintf("Nothing wants to run!\n");
kprintf("PID OWNER STATE NSCHED NAME\n");
for (auto* process = g_processes->head(); process; process = process->next()) {
kprintf("%w %w:%w %b %w %s\n",
process->pid(),
process->uid(),
process->gid(),
process->state(),
process->timesScheduled(),
process->name().characters());
}
kprintf("Switch to kernel process @ %w:%x\n", s_colonel_process->tss().cs, s_colonel_process->tss().eip);
return context_switch(*s_colonel_process);
}
}
}
bool Scheduler::yield()
{
if (!current) {
kprintf("PANIC: sched_yield() with !current");
HANG;
}
//dbgprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
InterruptDisabler disabler;
if (!pick_next())
return 1;
//dbgprintf("yield() jumping to new process: %x (%s)\n", current->farPtr().selector, current->name().characters());
switch_now();
return 0;
}
void Scheduler::pick_next_and_switch_now()
{
bool someone_wants_to_run = pick_next();
ASSERT(someone_wants_to_run);
switch_now();
}
void Scheduler::switch_now()
{
Descriptor& descriptor = getGDTEntry(current->selector());
descriptor.type = 9;
flushGDT();
asm("sti\n"
"ljmp *(%%eax)\n"
::"a"(&current->farPtr())
);
}
bool Scheduler::context_switch(Process& process)
{
process.set_ticks_left(time_slice);
process.did_schedule();
if (current == &process)
return false;
if (current) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current->state() == Process::Running)
current->set_state(Process::Runnable);
}
current = &process;
process.set_state(Process::Running);
#ifdef COOL_GLOBALS
g_cool_globals->current_pid = process.pid();
#endif
if (!process.selector()) {
process.setSelector(gdt_alloc_entry());
auto& descriptor = getGDTEntry(process.selector());
descriptor.setBase(&process.tss());
descriptor.setLimit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
}
auto& descriptor = getGDTEntry(process.selector());
descriptor.type = 11; // Busy TSS
flushGDT();
return true;
}
int sched_yield()
{
return Scheduler::yield();
}
static void redo_colonel_process_tss()
{
if (!s_colonel_process->selector())
s_colonel_process->setSelector(gdt_alloc_entry());
auto& tssDescriptor = getGDTEntry(s_colonel_process->selector());
tssDescriptor.setBase(&s_colonel_process->tss());
tssDescriptor.setLimit(0xffff);
tssDescriptor.dpl = 0;
tssDescriptor.segment_present = 1;
tssDescriptor.granularity = 1;
tssDescriptor.zero = 0;
tssDescriptor.operation_size = 1;
tssDescriptor.descriptor_type = 0;
tssDescriptor.type = 9;
flushGDT();
}
void Scheduler::prepare_for_iret_to_new_process()
{
redo_colonel_process_tss();
s_colonel_process->tss().backlink = current->selector();
load_task_register(s_colonel_process->selector());
}
void Scheduler::prepare_to_modify_own_tss()
{
// This ensures that a process modifying its own TSS in order to yield()
// and end up somewhere else doesn't just end up right after the yield().
load_task_register(s_colonel_process->selector());
}
static void hlt_loop()
{
for (;;) {
asm volatile("hlt");
}
}
void Scheduler::initialize()
{
s_colonel_process = Process::create_kernel_process(hlt_loop, "colonel");
current = nullptr;
redo_colonel_process_tss();
load_task_register(s_colonel_process->selector());
}

20
Kernel/Scheduler.h Normal file
View file

@ -0,0 +1,20 @@
#pragma once
#include <AK/Assertions.h>
class Process;
extern Process* current;
class Scheduler {
public:
static void initialize();
static bool pick_next();
static void pick_next_and_switch_now();
static void switch_now();
static bool yield();
static bool context_switch(Process&);
static void prepare_for_iret_to_new_process();
static void prepare_to_modify_own_tss();
};
int sched_yield();

View file

@ -2,6 +2,7 @@
#include "Process.h"
#include "Syscall.h"
#include "Console.h"
#include "Scheduler.h"
extern "C" void syscall_entry(RegisterDump&);
extern "C" void syscall_ISR();
@ -48,7 +49,7 @@ static DWORD handle(RegisterDump& regs, DWORD function, DWORD arg1, DWORD arg2,
ASSERT_INTERRUPTS_ENABLED();
switch (function) {
case Syscall::SC_yield:
sched_yield();
Scheduler::yield();
break;
case Syscall::SC_putch:
Console::the().putChar(arg1 & 0xff);

View file

@ -5,6 +5,7 @@
#include "Process.h"
#include "system.h"
#include "PIC.h"
#include "Scheduler.h"
#define IRQ_TIMER 0
@ -103,9 +104,9 @@ void clock_handle()
current->tss().esp = regs.esp_if_crossRing;
}
if (!scheduleNewProcess())
if (!Scheduler::pick_next())
return;
Process::prepare_for_iret_to_new_process();
Scheduler::prepare_for_iret_to_new_process();
// Set the NT (nested task) flag.
asm(

View file

@ -26,6 +26,7 @@
#include "ProcFileSystem.h"
#include "RTC.h"
#include "VirtualConsole.h"
#include "Scheduler.h"
#define TEST_VFS
#define KSYMS
@ -311,7 +312,7 @@ void init()
Process::create_kernel_process(undertaker_main, "undertaker");
Process::create_kernel_process(init_stage2, "init");
scheduleNewProcess();
Scheduler::pick_next();
sti();