|
@@ -0,0 +1,837 @@
|
|
|
+/*
|
|
|
+ * Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
|
|
|
+ *
|
|
|
+ * SPDX-License-Identifier: BSD-2-Clause
|
|
|
+ */
|
|
|
+
|
|
|
+#include "FlacLoader.h"
|
|
|
+#include "Buffer.h"
|
|
|
+#include <AK/BitStream.h>
|
|
|
+#include <AK/Debug.h>
|
|
|
+#include <AK/FlyString.h>
|
|
|
+#include <AK/Format.h>
|
|
|
+#include <AK/Stream.h>
|
|
|
+#include <AK/String.h>
|
|
|
+#include <AK/StringBuilder.h>
|
|
|
+#include <LibCore/File.h>
|
|
|
+#include <LibCore/FileStream.h>
|
|
|
+#include <math.h>
|
|
|
+
|
|
|
+namespace Audio {
|
|
|
+
|
|
|
+FlacLoaderPlugin::FlacLoaderPlugin(const StringView& path)
|
|
|
+ : m_file(Core::File::construct(path))
|
|
|
+{
|
|
|
+ if (!m_file->open(Core::OpenMode::ReadOnly)) {
|
|
|
+ m_error_string = String::formatted("Can't open file: {}", m_file->error_string());
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ m_valid = parse_header();
|
|
|
+ if (!m_valid)
|
|
|
+ return;
|
|
|
+
|
|
|
+ m_stream = make<FlacInputStream>(Core::InputFileStream(*m_file));
|
|
|
+ reset();
|
|
|
+
|
|
|
+ m_resampler = make<ResampleHelper<double>>(m_sample_rate, 44100);
|
|
|
+}
|
|
|
+
|
|
|
+FlacLoaderPlugin::FlacLoaderPlugin(const ByteBuffer& buffer)
|
|
|
+{
|
|
|
+ m_stream = make<FlacInputStream>(InputMemoryStream(buffer));
|
|
|
+ if (!m_stream) {
|
|
|
+ m_error_string = String::formatted("Can't open memory stream");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ m_valid = parse_header();
|
|
|
+ if (!m_valid)
|
|
|
+ return;
|
|
|
+ reset();
|
|
|
+
|
|
|
+ m_resampler = make<ResampleHelper<double>>(m_sample_rate, 44100);
|
|
|
+}
|
|
|
+
|
|
|
+bool FlacLoaderPlugin::sniff()
|
|
|
+{
|
|
|
+ return m_valid;
|
|
|
+}
|
|
|
+
|
|
|
+bool FlacLoaderPlugin::parse_header()
|
|
|
+{
|
|
|
+ Optional<Core::InputFileStream> fis;
|
|
|
+ bool ok = true;
|
|
|
+
|
|
|
+ InputBitStream bit_input = [&]() -> InputBitStream {
|
|
|
+ if (m_file) {
|
|
|
+ fis = Core::InputFileStream(*m_file);
|
|
|
+ return InputBitStream(*fis);
|
|
|
+ }
|
|
|
+ return InputBitStream(m_stream->get<InputMemoryStream>());
|
|
|
+ }();
|
|
|
+
|
|
|
+#define CHECK_OK(msg) \
|
|
|
+ do { \
|
|
|
+ if (!ok) { \
|
|
|
+ m_error_string = String::formatted("Parsing failed: {}", msg); \
|
|
|
+ return {}; \
|
|
|
+ } \
|
|
|
+ } while (0)
|
|
|
+
|
|
|
+ // Magic number
|
|
|
+ u32 flac = bit_input.read_bits_big_endian(32);
|
|
|
+ m_data_start_location += 4;
|
|
|
+ ok = ok && flac == 0x664C6143; // "flaC"
|
|
|
+ CHECK_OK("FLAC magic number");
|
|
|
+
|
|
|
+ // Receive the streaminfo block
|
|
|
+ FlacRawMetadataBlock streaminfo = next_meta_block(bit_input);
|
|
|
+ // next_meta_block sets the error string if something goes wrong
|
|
|
+ ok = ok && m_error_string.is_empty();
|
|
|
+ CHECK_OK(m_error_string);
|
|
|
+ ok = ok && (streaminfo.type == FlacMetadataBlockType::STREAMINFO);
|
|
|
+ CHECK_OK("First block type");
|
|
|
+ InputMemoryStream streaminfo_data_memory(streaminfo.data.bytes());
|
|
|
+ InputBitStream streaminfo_data(streaminfo_data_memory);
|
|
|
+
|
|
|
+ // STREAMINFO block
|
|
|
+ m_min_block_size = streaminfo_data.read_bits_big_endian(16);
|
|
|
+ ok = ok && (m_min_block_size >= 16);
|
|
|
+ CHECK_OK("Minimum block size");
|
|
|
+ m_max_block_size = streaminfo_data.read_bits_big_endian(16);
|
|
|
+ ok = ok && (m_max_block_size >= 16);
|
|
|
+ CHECK_OK("Maximum block size");
|
|
|
+ m_min_frame_size = streaminfo_data.read_bits_big_endian(24);
|
|
|
+ m_max_frame_size = streaminfo_data.read_bits_big_endian(24);
|
|
|
+ m_sample_rate = streaminfo_data.read_bits_big_endian(20);
|
|
|
+ ok = ok && (m_sample_rate <= 655350);
|
|
|
+ CHECK_OK("Sample rate");
|
|
|
+ m_num_channels = streaminfo_data.read_bits_big_endian(3) + 1; // 0 ^= one channel
|
|
|
+
|
|
|
+ u8 bits_per_sample = streaminfo_data.read_bits_big_endian(5) + 1;
|
|
|
+ if (bits_per_sample == 8) {
|
|
|
+ // FIXME: Signed/Unsigned issues?
|
|
|
+ m_sample_format = PcmSampleFormat::Uint8;
|
|
|
+ } else if (bits_per_sample == 16) {
|
|
|
+ m_sample_format = PcmSampleFormat::Int16;
|
|
|
+ } else if (bits_per_sample == 24) {
|
|
|
+ m_sample_format = PcmSampleFormat::Int24;
|
|
|
+ } else if (bits_per_sample == 32) {
|
|
|
+ m_sample_format = PcmSampleFormat::Int32;
|
|
|
+ } else {
|
|
|
+ ok = false;
|
|
|
+ CHECK_OK("Sample bit depth");
|
|
|
+ }
|
|
|
+
|
|
|
+ m_total_samples = streaminfo_data.read_bits_big_endian(36);
|
|
|
+ // Parse checksum into a buffer first
|
|
|
+ ByteBuffer md5_checksum = ByteBuffer::create_uninitialized(128 / 8);
|
|
|
+ streaminfo_data.read(md5_checksum);
|
|
|
+ md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) });
|
|
|
+
|
|
|
+ // Parse other blocks
|
|
|
+ // TODO: For a simple first implementation, all other blocks are skipped as allowed by the FLAC specification.
|
|
|
+ // Especially the SEEKTABLE block may become useful in a more sophisticated version.
|
|
|
+ [[maybe_unused]] u16 meta_blocks_parsed = 1;
|
|
|
+ [[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed;
|
|
|
+ FlacRawMetadataBlock block = streaminfo;
|
|
|
+ while (!block.is_last_block) {
|
|
|
+ block = next_meta_block(bit_input);
|
|
|
+ ++total_meta_blocks;
|
|
|
+ ok = ok && m_error_string.is_empty();
|
|
|
+ CHECK_OK(m_error_string);
|
|
|
+ }
|
|
|
+
|
|
|
+ if constexpr (AFLACLOADER_DEBUG) {
|
|
|
+ // HACK: u128 should be able to format itself
|
|
|
+ StringBuilder checksum_string;
|
|
|
+ for (unsigned int i = 0; i < md5_checksum.size(); ++i) {
|
|
|
+ checksum_string.appendff("{:0X}", md5_checksum[i]);
|
|
|
+ }
|
|
|
+ dbgln("Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, m_total_samples / static_cast<double>(m_sample_rate), checksum_string.to_string(), m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed);
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+#undef CHECK_OK
|
|
|
+}
|
|
|
+
|
|
|
+FlacRawMetadataBlock FlacLoaderPlugin::next_meta_block(InputBitStream& bit_input)
|
|
|
+{
|
|
|
+#define CHECK_IO_ERROR() \
|
|
|
+ do { \
|
|
|
+ if (bit_input.handle_any_error()) { \
|
|
|
+ m_error_string = "Read error"; \
|
|
|
+ return FlacRawMetadataBlock {}; \
|
|
|
+ } \
|
|
|
+ } while (0)
|
|
|
+
|
|
|
+ bool is_last_block = bit_input.read_bit_big_endian();
|
|
|
+ CHECK_IO_ERROR();
|
|
|
+ // The block type enum constants agree with the specification
|
|
|
+ FlacMetadataBlockType type = (FlacMetadataBlockType)bit_input.read_bits_big_endian(7);
|
|
|
+ CHECK_IO_ERROR();
|
|
|
+ if (type == FlacMetadataBlockType::INVALID) {
|
|
|
+ m_error_string = "Invalid metadata block";
|
|
|
+ return FlacRawMetadataBlock {};
|
|
|
+ }
|
|
|
+ m_data_start_location += 1;
|
|
|
+
|
|
|
+ u32 block_length = bit_input.read_bits_big_endian(24);
|
|
|
+ m_data_start_location += 3;
|
|
|
+ CHECK_IO_ERROR();
|
|
|
+ ByteBuffer block_data = ByteBuffer::create_uninitialized(block_length);
|
|
|
+ // Reads exactly the bytes necessary into the Bytes container
|
|
|
+ bit_input.read(block_data);
|
|
|
+ m_data_start_location += block_length;
|
|
|
+ CHECK_IO_ERROR();
|
|
|
+ return FlacRawMetadataBlock {
|
|
|
+ is_last_block,
|
|
|
+ type,
|
|
|
+ block_length,
|
|
|
+ block_data,
|
|
|
+ };
|
|
|
+
|
|
|
+#undef CHECK_IO_ERROR
|
|
|
+}
|
|
|
+
|
|
|
+void FlacLoaderPlugin::reset()
|
|
|
+{
|
|
|
+ seek(m_data_start_location);
|
|
|
+ m_current_frame.clear();
|
|
|
+}
|
|
|
+
|
|
|
+void FlacLoaderPlugin::seek(const int position)
|
|
|
+{
|
|
|
+ m_stream->seek(position);
|
|
|
+}
|
|
|
+
|
|
|
+// TODO implement these
|
|
|
+RefPtr<Buffer> FlacLoaderPlugin::get_more_samples([[maybe_unused]] size_t max_bytes_to_read_from_input)
|
|
|
+{
|
|
|
+ Vector<Frame> samples;
|
|
|
+ size_t remaining_samples = max_bytes_to_read_from_input;
|
|
|
+ while (remaining_samples > 0) {
|
|
|
+ if (!m_current_frame.has_value()) {
|
|
|
+ next_frame();
|
|
|
+ if (!m_error_string.is_empty()) {
|
|
|
+ dbgln("Frame parsing error: {}", m_error_string);
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+ // HACK: Test the start of the next subframe
|
|
|
+ // auto input = m_stream->bit_stream();
|
|
|
+ // u64 next = input.read_bits_big_endian(64);
|
|
|
+ // dbgln("After frame end: {}", next);
|
|
|
+ }
|
|
|
+ samples.append(m_current_frame_data.take_first());
|
|
|
+ if (m_current_frame_data.size() == 0) {
|
|
|
+ m_current_frame.clear();
|
|
|
+ }
|
|
|
+ --remaining_samples;
|
|
|
+ }
|
|
|
+
|
|
|
+ return Buffer::create_with_samples(move(samples));
|
|
|
+}
|
|
|
+
|
|
|
+void FlacLoaderPlugin::next_frame()
|
|
|
+{
|
|
|
+ bool ok = true;
|
|
|
+ InputBitStream bit_stream = m_stream->bit_stream();
|
|
|
+#define CHECK_OK(msg) \
|
|
|
+ do { \
|
|
|
+ if (!ok) { \
|
|
|
+ m_error_string = String::formatted("Frame parsing failed: {}", msg); \
|
|
|
+ bit_stream.align_to_byte_boundary(); \
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "Crash in FLAC loader: next bytes are {:x}", bit_stream.read_bits_big_endian(32)); \
|
|
|
+ return; \
|
|
|
+ } \
|
|
|
+ } while (0)
|
|
|
+
|
|
|
+#define CHECK_ERROR_STRING \
|
|
|
+ do { \
|
|
|
+ if (!m_error_string.is_null() && !m_error_string.is_empty()) { \
|
|
|
+ ok = false; \
|
|
|
+ CHECK_OK(m_error_string); \
|
|
|
+ } \
|
|
|
+ } while (0)
|
|
|
+
|
|
|
+ // TODO: Check the CRC-16 checksum (and others) by keeping track of read data
|
|
|
+
|
|
|
+ // FLAC frame sync code starts header
|
|
|
+ u16 sync_code = bit_stream.read_bits_big_endian(14);
|
|
|
+ ok = ok && (sync_code == 0b11111111111110);
|
|
|
+ CHECK_OK("Sync code");
|
|
|
+ bool reserved_bit = bit_stream.read_bit_big_endian();
|
|
|
+ ok = ok && (reserved_bit == 0);
|
|
|
+ CHECK_OK("Reserved frame header bit");
|
|
|
+ [[maybe_unused]] bool blocking_strategy = bit_stream.read_bit_big_endian();
|
|
|
+
|
|
|
+ u32 sample_count = convert_sample_count_code(bit_stream.read_bits_big_endian(4));
|
|
|
+ CHECK_ERROR_STRING;
|
|
|
+
|
|
|
+ u32 frame_sample_rate = convert_sample_rate_code(bit_stream.read_bits_big_endian(4));
|
|
|
+ CHECK_ERROR_STRING;
|
|
|
+
|
|
|
+ u8 channel_type_num = bit_stream.read_bits_big_endian(4);
|
|
|
+ if (channel_type_num >= 0b1011) {
|
|
|
+ ok = false;
|
|
|
+ CHECK_OK("Channel assignment");
|
|
|
+ }
|
|
|
+ FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num;
|
|
|
+
|
|
|
+ PcmSampleFormat bit_depth = convert_bit_depth_code(bit_stream.read_bits_big_endian(3));
|
|
|
+ CHECK_ERROR_STRING;
|
|
|
+
|
|
|
+ reserved_bit = bit_stream.read_bit_big_endian();
|
|
|
+ ok = ok && (reserved_bit == 0);
|
|
|
+ CHECK_OK("Reserved frame header end bit");
|
|
|
+
|
|
|
+ // FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits
|
|
|
+ m_current_sample_or_frame = read_utf8_char(bit_stream);
|
|
|
+
|
|
|
+ // Conditional header variables
|
|
|
+ if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) {
|
|
|
+ sample_count = bit_stream.read_bits(8) + 1;
|
|
|
+ } else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) {
|
|
|
+ sample_count = bit_stream.read_bits(16) + 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) {
|
|
|
+ frame_sample_rate = bit_stream.read_bits(8) * 1000;
|
|
|
+ } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) {
|
|
|
+ frame_sample_rate = bit_stream.read_bits(16);
|
|
|
+ } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) {
|
|
|
+ frame_sample_rate = bit_stream.read_bits(16) * 10;
|
|
|
+ }
|
|
|
+
|
|
|
+ // TODO: check header checksum, see above
|
|
|
+ [[maybe_unused]] u8 checksum = bit_stream.read_bits(8);
|
|
|
+
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum);
|
|
|
+
|
|
|
+ m_current_frame = FlacFrameHeader {
|
|
|
+ sample_count,
|
|
|
+ frame_sample_rate,
|
|
|
+ channel_type,
|
|
|
+ bit_depth,
|
|
|
+ };
|
|
|
+
|
|
|
+ u8 subframe_count = frame_channel_type_to_channel_count(channel_type);
|
|
|
+ Vector<Vector<i32>> current_subframes;
|
|
|
+ current_subframes.ensure_capacity(subframe_count);
|
|
|
+
|
|
|
+ for (u8 i = 0; i < subframe_count; ++i) {
|
|
|
+ FlacSubframeHeader new_subframe = next_subframe_header(bit_stream, i);
|
|
|
+ CHECK_ERROR_STRING;
|
|
|
+ Vector<i32> subframe_samples = parse_subframe(new_subframe, bit_stream);
|
|
|
+ // HACK: Test the start of the next subframe
|
|
|
+ CHECK_ERROR_STRING;
|
|
|
+ current_subframes.append(move(subframe_samples));
|
|
|
+ }
|
|
|
+
|
|
|
+ bit_stream.align_to_byte_boundary();
|
|
|
+
|
|
|
+ // TODO: check checksum, see above
|
|
|
+ [[maybe_unused]] u16 footer_checksum = bit_stream.read_bits_big_endian(16);
|
|
|
+
|
|
|
+ Vector<i32> left, right;
|
|
|
+
|
|
|
+ switch (channel_type) {
|
|
|
+ case FlacFrameChannelType::Mono:
|
|
|
+ left = right = current_subframes[0];
|
|
|
+ break;
|
|
|
+ case FlacFrameChannelType::Stereo:
|
|
|
+ // TODO mix together surround channels on each side?
|
|
|
+ case FlacFrameChannelType::StereoCenter:
|
|
|
+ case FlacFrameChannelType::Surround4p0:
|
|
|
+ case FlacFrameChannelType::Surround5p0:
|
|
|
+ case FlacFrameChannelType::Surround5p1:
|
|
|
+ case FlacFrameChannelType::Surround6p1:
|
|
|
+ case FlacFrameChannelType::Surround7p1:
|
|
|
+ left = current_subframes[0];
|
|
|
+ right = current_subframes[1];
|
|
|
+ break;
|
|
|
+ case FlacFrameChannelType::LeftSideStereo:
|
|
|
+ // channels are left (0) and side (1)
|
|
|
+ left = current_subframes[0];
|
|
|
+ right.ensure_capacity(left.size());
|
|
|
+ for (size_t i = 0; i < left.size(); ++i) {
|
|
|
+ // right = left - side
|
|
|
+ right.unchecked_append(left[i] - current_subframes[1][i]);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case FlacFrameChannelType::RightSideStereo:
|
|
|
+ // channels are side (0) and right (1)
|
|
|
+ right = current_subframes[1];
|
|
|
+ left.ensure_capacity(right.size());
|
|
|
+ for (size_t i = 0; i < right.size(); ++i) {
|
|
|
+ // left = right + side
|
|
|
+ left.unchecked_append(right[i] + current_subframes[0][i]);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case FlacFrameChannelType::MidSideStereo:
|
|
|
+ // channels are mid (0) and side (1)
|
|
|
+ left.ensure_capacity(current_subframes[0].size());
|
|
|
+ right.ensure_capacity(current_subframes[0].size());
|
|
|
+ for (size_t i = 0; i < current_subframes[0].size(); ++i) {
|
|
|
+ i64 mid = current_subframes[0][i];
|
|
|
+ i64 side = current_subframes[1][i];
|
|
|
+ mid *= 2;
|
|
|
+ // prevent integer division errors
|
|
|
+ left.unchecked_append(static_cast<i32>((mid + side) / 2));
|
|
|
+ right.unchecked_append(static_cast<i32>((mid - side) / 2));
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ VERIFY(left.size() == right.size());
|
|
|
+
|
|
|
+ // TODO: find the correct rescale offset
|
|
|
+ double sample_rescale = static_cast<double>(1 << pcm_bits_per_sample(m_current_frame->bit_depth));
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale);
|
|
|
+
|
|
|
+ m_current_frame_data.clear_with_capacity();
|
|
|
+ m_current_frame_data.ensure_capacity(left.size());
|
|
|
+ // zip together channels
|
|
|
+ for (size_t i = 0; i < left.size(); ++i) {
|
|
|
+ Frame frame = { left[i] / sample_rescale, right[i] / sample_rescale };
|
|
|
+ m_current_frame_data.unchecked_append(frame);
|
|
|
+ }
|
|
|
+
|
|
|
+#undef CHECK_OK
|
|
|
+#undef CHECK_ERROR_STRING
|
|
|
+}
|
|
|
+
|
|
|
+u32 FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code)
|
|
|
+{
|
|
|
+ // single codes
|
|
|
+ switch (sample_count_code) {
|
|
|
+ case 0:
|
|
|
+ m_error_string = "Reserved block size";
|
|
|
+ return 0;
|
|
|
+ case 1:
|
|
|
+ return 192;
|
|
|
+ case 6:
|
|
|
+ return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8;
|
|
|
+ case 7:
|
|
|
+ return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16;
|
|
|
+ }
|
|
|
+ if (sample_count_code >= 2 && sample_count_code <= 5) {
|
|
|
+ return 576 * pow(2, (sample_count_code - 2));
|
|
|
+ }
|
|
|
+ return 256 * pow(2, (sample_count_code - 8));
|
|
|
+}
|
|
|
+
|
|
|
+u32 FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code)
|
|
|
+{
|
|
|
+ switch (sample_rate_code) {
|
|
|
+ case 0:
|
|
|
+ return m_sample_rate;
|
|
|
+ case 1:
|
|
|
+ return 88200;
|
|
|
+ case 2:
|
|
|
+ return 176400;
|
|
|
+ case 3:
|
|
|
+ return 192000;
|
|
|
+ case 4:
|
|
|
+ return 8000;
|
|
|
+ case 5:
|
|
|
+ return 16000;
|
|
|
+ case 6:
|
|
|
+ return 22050;
|
|
|
+ case 7:
|
|
|
+ return 24000;
|
|
|
+ case 8:
|
|
|
+ return 32000;
|
|
|
+ case 9:
|
|
|
+ return 44100;
|
|
|
+ case 10:
|
|
|
+ return 48000;
|
|
|
+ case 11:
|
|
|
+ return 96000;
|
|
|
+ case 12:
|
|
|
+ return FLAC_SAMPLERATE_AT_END_OF_HEADER_8;
|
|
|
+ case 13:
|
|
|
+ return FLAC_SAMPLERATE_AT_END_OF_HEADER_16;
|
|
|
+ case 14:
|
|
|
+ return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10;
|
|
|
+ default:
|
|
|
+ m_error_string = "Invalid sample rate code";
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+PcmSampleFormat FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code)
|
|
|
+{
|
|
|
+ switch (bit_depth_code) {
|
|
|
+ case 0:
|
|
|
+ return m_sample_format;
|
|
|
+ case 1:
|
|
|
+ return PcmSampleFormat::Uint8;
|
|
|
+ case 4:
|
|
|
+ return PcmSampleFormat::Int16;
|
|
|
+ case 6:
|
|
|
+ return PcmSampleFormat::Int24;
|
|
|
+ case 3:
|
|
|
+ case 7:
|
|
|
+ m_error_string = "Reserved sample size";
|
|
|
+ return PcmSampleFormat::Float64;
|
|
|
+ default:
|
|
|
+ m_error_string = String::formatted("Unsupported sample size {}", bit_depth_code);
|
|
|
+ return PcmSampleFormat::Float64;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type)
|
|
|
+{
|
|
|
+ if (channel_type <= 7)
|
|
|
+ return channel_type + 1;
|
|
|
+ return 2;
|
|
|
+}
|
|
|
+
|
|
|
+FlacSubframeHeader FlacLoaderPlugin::next_subframe_header(InputBitStream& bit_stream, u8 channel_index)
|
|
|
+{
|
|
|
+ u8 bits_per_sample = pcm_bits_per_sample(m_current_frame->bit_depth);
|
|
|
+
|
|
|
+ // For inter-channel correlation, the side channel needs an extra bit for its samples
|
|
|
+ switch (m_current_frame->channels) {
|
|
|
+ case LeftSideStereo:
|
|
|
+ case MidSideStereo:
|
|
|
+ if (channel_index == 1) {
|
|
|
+ ++bits_per_sample;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case RightSideStereo:
|
|
|
+ if (channel_index == 0) {
|
|
|
+ ++bits_per_sample;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ // "normal" channel types
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ // zero-bit padding
|
|
|
+ bit_stream.read_bit_big_endian();
|
|
|
+
|
|
|
+ // subframe type (encoding)
|
|
|
+ u8 subframe_code = bit_stream.read_bits_big_endian(6);
|
|
|
+ if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000)) {
|
|
|
+ m_error_string = "Subframe type";
|
|
|
+ return {};
|
|
|
+ }
|
|
|
+
|
|
|
+ FlacSubframeType subframe_type;
|
|
|
+ u8 order = 0;
|
|
|
+ //LPC has the highest bit set
|
|
|
+ if ((subframe_code & 0b100000) > 0) {
|
|
|
+ subframe_type = FlacSubframeType::LPC;
|
|
|
+ order = (subframe_code & 0b011111) + 1;
|
|
|
+ } else if ((subframe_code & 0b001000) > 0) {
|
|
|
+ // Fixed has the third-highest bit set
|
|
|
+ subframe_type = FlacSubframeType::Fixed;
|
|
|
+ order = (subframe_code & 0b000111);
|
|
|
+ } else {
|
|
|
+ subframe_type = (FlacSubframeType)subframe_code;
|
|
|
+ }
|
|
|
+
|
|
|
+ // wasted bits per sample (unary encoding)
|
|
|
+ bool has_wasted_bits = bit_stream.read_bit_big_endian();
|
|
|
+ u8 k = 0;
|
|
|
+ if (has_wasted_bits) {
|
|
|
+ bool current_k_bit = 0;
|
|
|
+ u8 k = 0;
|
|
|
+ do {
|
|
|
+ current_k_bit = bit_stream.read_bit_big_endian();
|
|
|
+ ++k;
|
|
|
+ } while (current_k_bit != 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ return FlacSubframeHeader {
|
|
|
+ subframe_type,
|
|
|
+ order,
|
|
|
+ k,
|
|
|
+ bits_per_sample
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+Vector<i32> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, InputBitStream& bit_input)
|
|
|
+{
|
|
|
+ Vector<i32> samples;
|
|
|
+
|
|
|
+ switch (subframe_header.type) {
|
|
|
+ case FlacSubframeType::Constant: {
|
|
|
+ u64 constant_value = bit_input.read_bits_big_endian(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value);
|
|
|
+
|
|
|
+ samples.ensure_capacity(m_current_frame->sample_count);
|
|
|
+ for (u32 i = 0; i < m_current_frame->sample_count; ++i) {
|
|
|
+ samples.unchecked_append(constant_value);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case FlacSubframeType::Fixed: {
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order);
|
|
|
+ samples = decode_fixed_lpc(subframe_header, bit_input);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case FlacSubframeType::Verbatim: {
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe");
|
|
|
+ samples = decode_verbatim(subframe_header, bit_input);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case FlacSubframeType::LPC: {
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order);
|
|
|
+ samples = decode_custom_lpc(subframe_header, bit_input);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ m_error_string = "Unhandled FLAC subframe type";
|
|
|
+ return {};
|
|
|
+ }
|
|
|
+ if (!m_error_string.is_empty()) {
|
|
|
+ return {};
|
|
|
+ }
|
|
|
+
|
|
|
+ for (size_t i = 0; i < samples.size(); ++i) {
|
|
|
+ samples[i] <<= subframe_header.wasted_bits_per_sample;
|
|
|
+ }
|
|
|
+
|
|
|
+ ResampleHelper<i32> resampler(m_current_frame->sample_rate, m_sample_rate);
|
|
|
+ return resampler.resample(samples);
|
|
|
+}
|
|
|
+
|
|
|
+// Decode a subframe that isn't actually encoded
|
|
|
+Vector<i32> FlacLoaderPlugin::decode_verbatim([[maybe_unused]] FlacSubframeHeader& subframe, [[maybe_unused]] InputBitStream& bit_input)
|
|
|
+{
|
|
|
+ TODO();
|
|
|
+}
|
|
|
+
|
|
|
+// Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients
|
|
|
+Vector<i32> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
|
+{
|
|
|
+ Vector<i32> decoded;
|
|
|
+ decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
+
|
|
|
+ // warm-up samples
|
|
|
+ for (auto i = 0; i < subframe.order; ++i) {
|
|
|
+ decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample));
|
|
|
+ decoded[i] <<= subframe.wasted_bits_per_sample;
|
|
|
+ }
|
|
|
+
|
|
|
+ // precision of the coefficients
|
|
|
+ u8 lpc_precision = bit_input.read_bits_big_endian(4);
|
|
|
+ if (lpc_precision == 0b1111) {
|
|
|
+ m_error_string = "Invalid linear predictor coefficient precision";
|
|
|
+ return {};
|
|
|
+ }
|
|
|
+ lpc_precision += 1;
|
|
|
+
|
|
|
+ // shift needed on the data (signed!)
|
|
|
+ i8 lpc_shift = sign_extend(bit_input.read_bits_big_endian(5), 5);
|
|
|
+
|
|
|
+ Vector<i32> coefficients;
|
|
|
+ coefficients.ensure_capacity(subframe.order);
|
|
|
+ // read coefficients
|
|
|
+ for (auto i = 0; i < subframe.order; ++i) {
|
|
|
+ u32 raw_coefficient = bit_input.read_bits_big_endian(lpc_precision);
|
|
|
+ i32 coefficient = sign_extend(raw_coefficient, lpc_precision);
|
|
|
+ coefficients.unchecked_append(coefficient);
|
|
|
+ }
|
|
|
+
|
|
|
+ if constexpr (AFLACLOADER_DEBUG) {
|
|
|
+ StringBuilder coefficients_formatted;
|
|
|
+ coefficients_formatted.append("[ ");
|
|
|
+ for (auto coeff : coefficients) {
|
|
|
+ coefficients_formatted.append(String::formatted("{}, ", coeff));
|
|
|
+ }
|
|
|
+ coefficients_formatted.append("]");
|
|
|
+ dbgln("{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients_formatted.to_string());
|
|
|
+ }
|
|
|
+
|
|
|
+ // decode residual
|
|
|
+ // FIXME: This order may be incorrect, the LPC is applied to the residual, probably leading to incorrect results.
|
|
|
+ decoded = decode_residual(decoded, subframe, bit_input);
|
|
|
+
|
|
|
+ // approximate the waveform with the predictor
|
|
|
+ for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) {
|
|
|
+ i32 sample = 0;
|
|
|
+ for (size_t t = 0; t < subframe.order; ++t) {
|
|
|
+ sample += coefficients[t] * decoded[i - t - 1];
|
|
|
+ }
|
|
|
+ decoded[i] += sample >> lpc_shift;
|
|
|
+ }
|
|
|
+
|
|
|
+ return decoded;
|
|
|
+}
|
|
|
+
|
|
|
+// Decode a subframe encoded with one of the fixed linear predictor codings
|
|
|
+Vector<i32> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
|
+{
|
|
|
+ Vector<i32> decoded;
|
|
|
+ decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
+
|
|
|
+ // warm-up samples
|
|
|
+ for (auto i = 0; i < subframe.order; ++i) {
|
|
|
+ decoded.unchecked_append(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample));
|
|
|
+ }
|
|
|
+
|
|
|
+ decode_residual(decoded, subframe, bit_input);
|
|
|
+ if (!m_error_string.is_empty())
|
|
|
+ return {};
|
|
|
+ dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order);
|
|
|
+
|
|
|
+ switch (subframe.order) {
|
|
|
+ case 0:
|
|
|
+ // s_0(t) = 0
|
|
|
+ for (auto i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
|
+ decoded[i] += 0;
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ // s_1(t) = s(t-1)
|
|
|
+ for (auto i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
|
+ decoded[i] += decoded[i - 1];
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ // s_2(t) = 2s(t-1) - s(t-2)
|
|
|
+ for (auto i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
|
+ decoded[i] += 2 * decoded[i - 1] - decoded[i - 2];
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ // s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
|
|
|
+ for (auto i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
|
+ decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3];
|
|
|
+ break;
|
|
|
+ case 4:
|
|
|
+ // s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
|
|
|
+ for (auto i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
|
+ decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4];
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ m_error_string = String::formatted("Unrecognized predictor order {}", subframe.order);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ return decoded;
|
|
|
+}
|
|
|
+
|
|
|
+// Decode the residual, the "error" between the function approximation and the actual audio data
|
|
|
+Vector<i32> FlacLoaderPlugin::decode_residual(Vector<i32>& decoded, FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
|
+{
|
|
|
+ u8 residual_mode = bit_input.read_bits_big_endian(2);
|
|
|
+ u8 partition_order = bit_input.read_bits_big_endian(4);
|
|
|
+ u32 partitions = 1 << partition_order;
|
|
|
+
|
|
|
+ if (residual_mode == FlacResidualMode::Rice4Bit) {
|
|
|
+ // decode a single Rice partition with four bits for the order k
|
|
|
+ for (u32 i = 0; i < partitions; ++i) {
|
|
|
+ auto rice_partition = decode_rice_partition(4, partitions, i, subframe, bit_input);
|
|
|
+ decoded.extend(move(rice_partition));
|
|
|
+ }
|
|
|
+ } else if (residual_mode == FlacResidualMode::Rice5Bit) {
|
|
|
+ // five bits equivalent
|
|
|
+ for (u32 i = 0; i < partitions; ++i) {
|
|
|
+ auto rice_partition = decode_rice_partition(5, partitions, i, subframe, bit_input);
|
|
|
+ decoded.extend(move(rice_partition));
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ m_error_string = "Reserved residual coding method";
|
|
|
+ return {};
|
|
|
+ }
|
|
|
+
|
|
|
+ return decoded;
|
|
|
+}
|
|
|
+
|
|
|
+// Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k
|
|
|
+ALWAYS_INLINE Vector<i32> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
|
+{
|
|
|
+ // Rice parameter / Exp-Golomb order
|
|
|
+ u8 k = bit_input.read_bits_big_endian(partition_type);
|
|
|
+
|
|
|
+ u32 residual_sample_count;
|
|
|
+ if (partitions == 0)
|
|
|
+ residual_sample_count = m_current_frame->sample_count - subframe.order;
|
|
|
+ else
|
|
|
+ residual_sample_count = m_current_frame->sample_count / partitions;
|
|
|
+ if (partition_index == 0)
|
|
|
+ residual_sample_count -= subframe.order;
|
|
|
+
|
|
|
+ Vector<i32> rice_partition;
|
|
|
+ rice_partition.resize(residual_sample_count);
|
|
|
+
|
|
|
+ // escape code for unencoded binary partition
|
|
|
+ if (k == (1 << partition_type) - 1) {
|
|
|
+ u8 unencoded_bps = bit_input.read_bits_big_endian(5);
|
|
|
+ for (u32 r = 0; r < residual_sample_count; ++r) {
|
|
|
+ rice_partition[r] = bit_input.read_bits_big_endian(unencoded_bps);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ for (u32 r = 0; r < residual_sample_count; ++r) {
|
|
|
+ rice_partition[r] = decode_unsigned_exp_golomb(k, bit_input);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return rice_partition;
|
|
|
+}
|
|
|
+
|
|
|
+// Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant)
|
|
|
+ALWAYS_INLINE i32 decode_unsigned_exp_golomb(u8 k, InputBitStream& bit_input)
|
|
|
+{
|
|
|
+ u8 q = 0;
|
|
|
+ while (bit_input.read_bit_big_endian() == 0)
|
|
|
+ ++q;
|
|
|
+
|
|
|
+ // least significant bits (remainder)
|
|
|
+ u32 rem = bit_input.read_bits_big_endian(k);
|
|
|
+ u32 value = (u32)(q << k | rem);
|
|
|
+
|
|
|
+ return rice_to_signed(value);
|
|
|
+}
|
|
|
+
|
|
|
+u64 read_utf8_char(InputStream& input)
|
|
|
+{
|
|
|
+ u64 character;
|
|
|
+ ByteBuffer single_byte_buffer = ByteBuffer::create_uninitialized(1);
|
|
|
+ input.read(single_byte_buffer);
|
|
|
+ u8 start_byte = single_byte_buffer[0];
|
|
|
+ // Signal byte is zero: ASCII character
|
|
|
+ if ((start_byte & 0b10000000) == 0) {
|
|
|
+ return start_byte;
|
|
|
+ } else if ((start_byte & 0b11000000) == 0b10000000) {
|
|
|
+ // illegal continuation byte
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ // This algorithm is too good and supports the theoretical max 0xFF start byte
|
|
|
+ u8 length = 1;
|
|
|
+ while (((start_byte << length) & 0b10000000) == 0b10000000)
|
|
|
+ ++length;
|
|
|
+ u8 bits_from_start_byte = 8 - (length + 1);
|
|
|
+ u8 start_byte_bitmask = pow(2, bits_from_start_byte) - 1;
|
|
|
+ character = start_byte_bitmask & start_byte;
|
|
|
+ for (u8 i = length; i > 0; --i) {
|
|
|
+ input.read(single_byte_buffer);
|
|
|
+ u8 current_byte = single_byte_buffer[0];
|
|
|
+ character = (character << 6) | (current_byte & 0b00111111);
|
|
|
+ }
|
|
|
+ return character;
|
|
|
+}
|
|
|
+
|
|
|
+i64 sign_extend(u32 n, u8 size)
|
|
|
+{
|
|
|
+ // negative
|
|
|
+ if ((n & (1 << (size - 1))) > 0) {
|
|
|
+ return static_cast<i64>(n | (0xffffffff << size));
|
|
|
+ }
|
|
|
+ // positive
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+i32 rice_to_signed(u32 x)
|
|
|
+{
|
|
|
+ // positive numbers are even, negative numbers are odd
|
|
|
+ // bitmask for conditionally inverting the entire number, thereby "negating" it
|
|
|
+ i32 sign = -(x & 1);
|
|
|
+ // copies the sign's sign onto the actual magnitude of x
|
|
|
+ return (i32)(sign ^ (x >> 1));
|
|
|
+}
|
|
|
+
|
|
|
+}
|