LibCore: Big first step towards pluggable Core::EventLoop
The EventLoop is now a wrapper around an EventLoopImplementation. Our old EventLoop code has moved into EventLoopImplementationUnix and continues to work as before. The main difference is that all the separate thread_local variables have been collected into a file-local ThreadData data structure. The goal here is to allow running Core::EventLoop with a totally different backend, such as Qt for Ladybird.
This commit is contained in:
parent
3de8dd921e
commit
16c47ccff6
Notes:
sideshowbarker
2024-07-17 03:16:02 +09:00
Author: https://github.com/awesomekling Commit: https://github.com/SerenityOS/serenity/commit/16c47ccff6 Pull-request: https://github.com/SerenityOS/serenity/pull/18493 Reviewed-by: https://github.com/FireFox317
11 changed files with 718 additions and 562 deletions
|
@ -14,7 +14,6 @@ static RefPtr<Client> s_the = nullptr;
|
|||
Client& Client::the()
|
||||
{
|
||||
if (!s_the || !s_the->is_open()) {
|
||||
VERIFY(Core::EventLoop::has_been_instantiated());
|
||||
s_the = Client::try_create().release_value_but_fixme_should_propagate_errors();
|
||||
}
|
||||
return *s_the;
|
||||
|
|
|
@ -11,6 +11,8 @@ set(SOURCES
|
|||
ElapsedTimer.cpp
|
||||
Event.cpp
|
||||
EventLoop.cpp
|
||||
EventLoopImplementation.cpp
|
||||
EventLoopImplementationUnix.cpp
|
||||
File.cpp
|
||||
IODevice.cpp
|
||||
LockFile.cpp
|
||||
|
|
|
@ -6,252 +6,76 @@
|
|||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#include <AK/Assertions.h>
|
||||
#include <AK/Badge.h>
|
||||
#include <AK/Debug.h>
|
||||
#include <AK/Format.h>
|
||||
#include <AK/IDAllocator.h>
|
||||
#include <AK/JsonObject.h>
|
||||
#include <AK/JsonValue.h>
|
||||
#include <AK/NeverDestroyed.h>
|
||||
#include <AK/Singleton.h>
|
||||
#include <AK/TemporaryChange.h>
|
||||
#include <AK/Time.h>
|
||||
#include <LibCore/Event.h>
|
||||
#include <LibCore/EventLoop.h>
|
||||
#include <LibCore/LocalServer.h>
|
||||
#include <LibCore/Notifier.h>
|
||||
#include <LibCore/EventLoopImplementationUnix.h>
|
||||
#include <LibCore/Object.h>
|
||||
#include <LibCore/Promise.h>
|
||||
#include <LibCore/SessionManagement.h>
|
||||
#include <LibCore/Socket.h>
|
||||
#include <LibCore/ThreadEventQueue.h>
|
||||
#include <LibThreading/Mutex.h>
|
||||
#include <LibThreading/MutexProtected.h>
|
||||
#include <errno.h>
|
||||
#include <fcntl.h>
|
||||
#include <signal.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/select.h>
|
||||
#include <sys/socket.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/types.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#ifdef AK_OS_SERENITY
|
||||
# include <LibCore/Account.h>
|
||||
|
||||
extern bool s_global_initializers_ran;
|
||||
#endif
|
||||
|
||||
namespace Core {
|
||||
|
||||
struct EventLoopTimer {
|
||||
int timer_id { 0 };
|
||||
Time interval;
|
||||
Time fire_time;
|
||||
bool should_reload { false };
|
||||
TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
|
||||
WeakPtr<Object> owner;
|
||||
|
||||
void reload(Time const& now);
|
||||
bool has_expired(Time const& now) const;
|
||||
};
|
||||
|
||||
struct EventLoop::Private {
|
||||
ThreadEventQueue& thread_event_queue;
|
||||
|
||||
Private()
|
||||
: thread_event_queue(ThreadEventQueue::current())
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
static Threading::MutexProtected<NeverDestroyed<IDAllocator>> s_id_allocator;
|
||||
|
||||
// Each thread has its own event loop stack, its own timers, notifiers and a wake pipe.
|
||||
static thread_local Vector<EventLoop&>* s_event_loop_stack;
|
||||
static thread_local HashMap<int, NonnullOwnPtr<EventLoopTimer>>* s_timers;
|
||||
static thread_local HashTable<Notifier*>* s_notifiers;
|
||||
// The wake pipe is both responsible for notifying us when someone calls wake(), as well as POSIX signals.
|
||||
// While wake() pushes zero into the pipe, signal numbers (by defintion nonzero, see signal_numbers.h) are pushed into the pipe verbatim.
|
||||
thread_local int EventLoop::s_wake_pipe_fds[2];
|
||||
thread_local bool EventLoop::s_wake_pipe_initialized { false };
|
||||
|
||||
void EventLoop::initialize_wake_pipes()
|
||||
namespace {
|
||||
thread_local Vector<EventLoop&>* s_event_loop_stack;
|
||||
Vector<EventLoop&>& event_loop_stack()
|
||||
{
|
||||
if (!s_wake_pipe_initialized) {
|
||||
#if defined(SOCK_NONBLOCK)
|
||||
int rc = pipe2(s_wake_pipe_fds, O_CLOEXEC);
|
||||
#else
|
||||
int rc = pipe(s_wake_pipe_fds);
|
||||
fcntl(s_wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
|
||||
fcntl(s_wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
|
||||
|
||||
#endif
|
||||
VERIFY(rc == 0);
|
||||
s_wake_pipe_initialized = true;
|
||||
}
|
||||
if (!s_event_loop_stack)
|
||||
s_event_loop_stack = new Vector<EventLoop&>;
|
||||
return *s_event_loop_stack;
|
||||
}
|
||||
|
||||
bool EventLoop::has_been_instantiated()
|
||||
bool has_event_loop()
|
||||
{
|
||||
return s_event_loop_stack != nullptr && !s_event_loop_stack->is_empty();
|
||||
return !event_loop_stack().is_empty();
|
||||
}
|
||||
|
||||
class SignalHandlers : public RefCounted<SignalHandlers> {
|
||||
AK_MAKE_NONCOPYABLE(SignalHandlers);
|
||||
AK_MAKE_NONMOVABLE(SignalHandlers);
|
||||
|
||||
public:
|
||||
SignalHandlers(int signo, void (*handle_signal)(int));
|
||||
~SignalHandlers();
|
||||
|
||||
void dispatch();
|
||||
int add(Function<void(int)>&& handler);
|
||||
bool remove(int handler_id);
|
||||
|
||||
bool is_empty() const
|
||||
{
|
||||
if (m_calling_handlers) {
|
||||
for (auto& handler : m_handlers_pending) {
|
||||
if (handler.value)
|
||||
return false; // an add is pending
|
||||
}
|
||||
}
|
||||
return m_handlers.is_empty();
|
||||
}
|
||||
|
||||
bool have(int handler_id) const
|
||||
{
|
||||
if (m_calling_handlers) {
|
||||
auto it = m_handlers_pending.find(handler_id);
|
||||
if (it != m_handlers_pending.end()) {
|
||||
if (!it->value)
|
||||
return false; // a deletion is pending
|
||||
}
|
||||
}
|
||||
return m_handlers.contains(handler_id);
|
||||
}
|
||||
|
||||
int m_signo;
|
||||
void (*m_original_handler)(int); // TODO: can't use sighandler_t?
|
||||
HashMap<int, Function<void(int)>> m_handlers;
|
||||
HashMap<int, Function<void(int)>> m_handlers_pending;
|
||||
bool m_calling_handlers { false };
|
||||
};
|
||||
|
||||
struct SignalHandlersInfo {
|
||||
HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
|
||||
int next_signal_id { 0 };
|
||||
};
|
||||
|
||||
static Singleton<SignalHandlersInfo> s_signals;
|
||||
template<bool create_if_null = true>
|
||||
inline SignalHandlersInfo* signals_info()
|
||||
{
|
||||
return s_signals.ptr();
|
||||
}
|
||||
|
||||
pid_t EventLoop::s_pid;
|
||||
|
||||
EventLoop::EventLoop()
|
||||
: m_wake_pipe_fds(&s_wake_pipe_fds)
|
||||
, m_private(make<Private>())
|
||||
: m_impl(make<EventLoopImplementationUnix>())
|
||||
{
|
||||
#ifdef AK_OS_SERENITY
|
||||
if (!s_global_initializers_ran) {
|
||||
// NOTE: Trying to have an event loop as a global variable will lead to initialization-order fiascos,
|
||||
// as the event loop constructor accesses and/or sets other global variables.
|
||||
// Therefore, we crash the program before ASAN catches us.
|
||||
// If you came here because of the assertion failure, please redesign your program to not have global event loops.
|
||||
// The common practice is to initialize the main event loop in the main function, and if necessary,
|
||||
// pass event loop references around or access them with EventLoop::with_main_locked() and EventLoop::current().
|
||||
VERIFY_NOT_REACHED();
|
||||
if (event_loop_stack().is_empty()) {
|
||||
event_loop_stack().append(*this);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (!s_event_loop_stack) {
|
||||
s_event_loop_stack = new Vector<EventLoop&>;
|
||||
s_timers = new HashMap<int, NonnullOwnPtr<EventLoopTimer>>;
|
||||
s_notifiers = new HashTable<Notifier*>;
|
||||
}
|
||||
|
||||
if (s_event_loop_stack->is_empty()) {
|
||||
s_pid = getpid();
|
||||
s_event_loop_stack->append(*this);
|
||||
}
|
||||
|
||||
initialize_wake_pipes();
|
||||
|
||||
dbgln_if(EVENTLOOP_DEBUG, "{} Core::EventLoop constructed :)", getpid());
|
||||
}
|
||||
|
||||
EventLoop::~EventLoop()
|
||||
{
|
||||
if (!s_event_loop_stack->is_empty() && &s_event_loop_stack->last() == this)
|
||||
s_event_loop_stack->take_last();
|
||||
if (!event_loop_stack().is_empty() && &event_loop_stack().last() == this) {
|
||||
event_loop_stack().take_last();
|
||||
}
|
||||
}
|
||||
|
||||
#define VERIFY_EVENT_LOOP_INITIALIZED() \
|
||||
do { \
|
||||
if (!s_event_loop_stack) { \
|
||||
warnln("EventLoop static API was called without prior EventLoop init!"); \
|
||||
VERIFY_NOT_REACHED(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
EventLoop& EventLoop::current()
|
||||
{
|
||||
VERIFY_EVENT_LOOP_INITIALIZED();
|
||||
return s_event_loop_stack->last();
|
||||
return event_loop_stack().last();
|
||||
}
|
||||
|
||||
void EventLoop::quit(int code)
|
||||
{
|
||||
dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::quit({})", code);
|
||||
m_exit_requested = true;
|
||||
m_exit_code = code;
|
||||
m_impl->quit(code);
|
||||
}
|
||||
|
||||
void EventLoop::unquit()
|
||||
{
|
||||
dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::unquit()");
|
||||
m_exit_requested = false;
|
||||
m_exit_code = 0;
|
||||
m_impl->unquit();
|
||||
}
|
||||
|
||||
struct EventLoopPusher {
|
||||
public:
|
||||
EventLoopPusher(EventLoop& event_loop)
|
||||
: m_event_loop(event_loop)
|
||||
{
|
||||
if (EventLoop::has_been_instantiated()) {
|
||||
s_event_loop_stack->append(event_loop);
|
||||
}
|
||||
event_loop_stack().append(event_loop);
|
||||
}
|
||||
~EventLoopPusher()
|
||||
{
|
||||
if (EventLoop::has_been_instantiated()) {
|
||||
s_event_loop_stack->take_last();
|
||||
}
|
||||
event_loop_stack().take_last();
|
||||
}
|
||||
|
||||
private:
|
||||
EventLoop& m_event_loop;
|
||||
};
|
||||
|
||||
int EventLoop::exec()
|
||||
{
|
||||
EventLoopPusher pusher(*this);
|
||||
for (;;) {
|
||||
if (m_exit_requested)
|
||||
return m_exit_code;
|
||||
pump();
|
||||
}
|
||||
VERIFY_NOT_REACHED();
|
||||
return m_impl->exec();
|
||||
}
|
||||
|
||||
void EventLoop::spin_until(Function<bool()> goal_condition)
|
||||
|
@ -263,16 +87,12 @@ void EventLoop::spin_until(Function<bool()> goal_condition)
|
|||
|
||||
size_t EventLoop::pump(WaitMode mode)
|
||||
{
|
||||
// Pumping the event loop from another thread is not allowed.
|
||||
VERIFY(&m_private->thread_event_queue == &ThreadEventQueue::current());
|
||||
|
||||
wait_for_event(mode);
|
||||
return m_private->thread_event_queue.process();
|
||||
return m_impl->pump(mode == WaitMode::WaitForEvents ? EventLoopImplementation::PumpMode::WaitForEvents : EventLoopImplementation::PumpMode::DontWaitForEvents);
|
||||
}
|
||||
|
||||
void EventLoop::post_event(Object& receiver, NonnullOwnPtr<Event>&& event)
|
||||
{
|
||||
m_private->thread_event_queue.post_event(receiver, move(event));
|
||||
m_impl->post_event(receiver, move(event));
|
||||
}
|
||||
|
||||
void EventLoop::add_job(NonnullRefPtr<Promise<NonnullRefPtr<Object>>> job_promise)
|
||||
|
@ -280,373 +100,56 @@ void EventLoop::add_job(NonnullRefPtr<Promise<NonnullRefPtr<Object>>> job_promis
|
|||
ThreadEventQueue::current().add_job(move(job_promise));
|
||||
}
|
||||
|
||||
SignalHandlers::SignalHandlers(int signo, void (*handle_signal)(int))
|
||||
: m_signo(signo)
|
||||
, m_original_handler(signal(signo, handle_signal))
|
||||
int EventLoop::register_signal(int signal_number, Function<void(int)> handler)
|
||||
{
|
||||
dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Registered handler for signal {}", m_signo);
|
||||
}
|
||||
|
||||
SignalHandlers::~SignalHandlers()
|
||||
{
|
||||
dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Unregistering handler for signal {}", m_signo);
|
||||
signal(m_signo, m_original_handler);
|
||||
}
|
||||
|
||||
void SignalHandlers::dispatch()
|
||||
{
|
||||
TemporaryChange change(m_calling_handlers, true);
|
||||
for (auto& handler : m_handlers)
|
||||
handler.value(m_signo);
|
||||
if (!m_handlers_pending.is_empty()) {
|
||||
// Apply pending adds/removes
|
||||
for (auto& handler : m_handlers_pending) {
|
||||
if (handler.value) {
|
||||
auto result = m_handlers.set(handler.key, move(handler.value));
|
||||
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
|
||||
} else {
|
||||
m_handlers.remove(handler.key);
|
||||
}
|
||||
}
|
||||
m_handlers_pending.clear();
|
||||
}
|
||||
}
|
||||
|
||||
int SignalHandlers::add(Function<void(int)>&& handler)
|
||||
{
|
||||
int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
|
||||
if (m_calling_handlers)
|
||||
m_handlers_pending.set(id, move(handler));
|
||||
else
|
||||
m_handlers.set(id, move(handler));
|
||||
return id;
|
||||
}
|
||||
|
||||
bool SignalHandlers::remove(int handler_id)
|
||||
{
|
||||
VERIFY(handler_id != 0);
|
||||
if (m_calling_handlers) {
|
||||
auto it = m_handlers.find(handler_id);
|
||||
if (it != m_handlers.end()) {
|
||||
// Mark pending remove
|
||||
m_handlers_pending.set(handler_id, {});
|
||||
return true;
|
||||
}
|
||||
it = m_handlers_pending.find(handler_id);
|
||||
if (it != m_handlers_pending.end()) {
|
||||
if (!it->value)
|
||||
return false; // already was marked as deleted
|
||||
it->value = nullptr;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return m_handlers.remove(handler_id);
|
||||
}
|
||||
|
||||
void EventLoop::dispatch_signal(int signo)
|
||||
{
|
||||
auto& info = *signals_info();
|
||||
auto handlers = info.signal_handlers.find(signo);
|
||||
if (handlers != info.signal_handlers.end()) {
|
||||
// Make sure we bump the ref count while dispatching the handlers!
|
||||
// This allows a handler to unregister/register while the handlers
|
||||
// are being called!
|
||||
auto handler = handlers->value;
|
||||
dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: dispatching signal {}", signo);
|
||||
handler->dispatch();
|
||||
}
|
||||
}
|
||||
|
||||
void EventLoop::handle_signal(int signo)
|
||||
{
|
||||
VERIFY(signo != 0);
|
||||
// We MUST check if the current pid still matches, because there
|
||||
// is a window between fork() and exec() where a signal delivered
|
||||
// to our fork could be inadvertently routed to the parent process!
|
||||
if (getpid() == s_pid) {
|
||||
int nwritten = write(s_wake_pipe_fds[1], &signo, sizeof(signo));
|
||||
if (nwritten < 0) {
|
||||
perror("EventLoop::register_signal: write");
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
} else {
|
||||
// We're a fork who received a signal, reset s_pid
|
||||
s_pid = 0;
|
||||
}
|
||||
}
|
||||
|
||||
int EventLoop::register_signal(int signo, Function<void(int)> handler)
|
||||
{
|
||||
VERIFY(signo != 0);
|
||||
auto& info = *signals_info();
|
||||
auto handlers = info.signal_handlers.find(signo);
|
||||
if (handlers == info.signal_handlers.end()) {
|
||||
auto signal_handlers = adopt_ref(*new SignalHandlers(signo, EventLoop::handle_signal));
|
||||
auto handler_id = signal_handlers->add(move(handler));
|
||||
info.signal_handlers.set(signo, move(signal_handlers));
|
||||
return handler_id;
|
||||
} else {
|
||||
return handlers->value->add(move(handler));
|
||||
}
|
||||
if (!has_event_loop())
|
||||
return 0;
|
||||
return current().m_impl->register_signal(signal_number, move(handler));
|
||||
}
|
||||
|
||||
void EventLoop::unregister_signal(int handler_id)
|
||||
{
|
||||
VERIFY(handler_id != 0);
|
||||
int remove_signo = 0;
|
||||
auto& info = *signals_info();
|
||||
for (auto& h : info.signal_handlers) {
|
||||
auto& handlers = *h.value;
|
||||
if (handlers.remove(handler_id)) {
|
||||
if (handlers.is_empty())
|
||||
remove_signo = handlers.m_signo;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (remove_signo != 0)
|
||||
info.signal_handlers.remove(remove_signo);
|
||||
}
|
||||
|
||||
void EventLoop::notify_forked(ForkEvent event)
|
||||
{
|
||||
VERIFY_EVENT_LOOP_INITIALIZED();
|
||||
switch (event) {
|
||||
case ForkEvent::Child:
|
||||
s_event_loop_stack->clear();
|
||||
s_timers->clear();
|
||||
s_notifiers->clear();
|
||||
s_wake_pipe_initialized = false;
|
||||
initialize_wake_pipes();
|
||||
if (auto* info = signals_info<false>()) {
|
||||
info->signal_handlers.clear();
|
||||
info->next_signal_id = 0;
|
||||
}
|
||||
s_pid = 0;
|
||||
if (!has_event_loop())
|
||||
return;
|
||||
}
|
||||
|
||||
VERIFY_NOT_REACHED();
|
||||
current().m_impl->unregister_signal(handler_id);
|
||||
}
|
||||
|
||||
void EventLoop::wait_for_event(WaitMode mode)
|
||||
void EventLoop::notify_forked(ForkEvent)
|
||||
{
|
||||
fd_set rfds;
|
||||
fd_set wfds;
|
||||
retry:
|
||||
|
||||
// Set up the file descriptors for select().
|
||||
// Basically, we translate high-level event information into low-level selectable file descriptors.
|
||||
FD_ZERO(&rfds);
|
||||
FD_ZERO(&wfds);
|
||||
|
||||
int max_fd = 0;
|
||||
auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
|
||||
FD_SET(fd, &set);
|
||||
if (fd > max_fd)
|
||||
max_fd = fd;
|
||||
};
|
||||
|
||||
int max_fd_added = -1;
|
||||
// The wake pipe informs us of POSIX signals as well as manual calls to wake()
|
||||
add_fd_to_set(s_wake_pipe_fds[0], rfds);
|
||||
max_fd = max(max_fd, max_fd_added);
|
||||
|
||||
for (auto& notifier : *s_notifiers) {
|
||||
if (notifier->type() == Notifier::Type::Read)
|
||||
add_fd_to_set(notifier->fd(), rfds);
|
||||
if (notifier->type() == Notifier::Type::Write)
|
||||
add_fd_to_set(notifier->fd(), wfds);
|
||||
if (notifier->type() == Notifier::Type::Exceptional)
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
|
||||
bool has_pending_events = m_private->thread_event_queue.has_pending_events();
|
||||
|
||||
// Figure out how long to wait at maximum.
|
||||
// This mainly depends on the WaitMode and whether we have pending events, but also the next expiring timer.
|
||||
Time now;
|
||||
struct timeval timeout = { 0, 0 };
|
||||
bool should_wait_forever = false;
|
||||
if (mode == WaitMode::WaitForEvents && !has_pending_events) {
|
||||
auto next_timer_expiration = get_next_timer_expiration();
|
||||
if (next_timer_expiration.has_value()) {
|
||||
now = Time::now_monotonic_coarse();
|
||||
auto computed_timeout = next_timer_expiration.value() - now;
|
||||
if (computed_timeout.is_negative())
|
||||
computed_timeout = Time::zero();
|
||||
timeout = computed_timeout.to_timeval();
|
||||
} else {
|
||||
should_wait_forever = true;
|
||||
}
|
||||
}
|
||||
|
||||
try_select_again:
|
||||
// select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
|
||||
int marked_fd_count = select(max_fd + 1, &rfds, &wfds, nullptr, should_wait_forever ? nullptr : &timeout);
|
||||
// Because POSIX, we might spuriously return from select() with EINTR; just select again.
|
||||
if (marked_fd_count < 0) {
|
||||
int saved_errno = errno;
|
||||
if (saved_errno == EINTR) {
|
||||
if (m_exit_requested)
|
||||
return;
|
||||
goto try_select_again;
|
||||
}
|
||||
dbgln("Core::EventLoop::wait_for_event: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
|
||||
// We woke up due to a call to wake() or a POSIX signal.
|
||||
// Handle signals and see whether we need to handle events as well.
|
||||
if (FD_ISSET(s_wake_pipe_fds[0], &rfds)) {
|
||||
int wake_events[8];
|
||||
ssize_t nread;
|
||||
// We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
|
||||
// but we get interrupted. Therefore, just retry while we were interrupted.
|
||||
do {
|
||||
errno = 0;
|
||||
nread = read(s_wake_pipe_fds[0], wake_events, sizeof(wake_events));
|
||||
if (nread == 0)
|
||||
break;
|
||||
} while (nread < 0 && errno == EINTR);
|
||||
if (nread < 0) {
|
||||
perror("Core::EventLoop::wait_for_event: read from wake pipe");
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
VERIFY(nread > 0);
|
||||
bool wake_requested = false;
|
||||
int event_count = nread / sizeof(wake_events[0]);
|
||||
for (int i = 0; i < event_count; i++) {
|
||||
if (wake_events[i] != 0)
|
||||
dispatch_signal(wake_events[i]);
|
||||
else
|
||||
wake_requested = true;
|
||||
}
|
||||
|
||||
if (!wake_requested && nread == sizeof(wake_events))
|
||||
goto retry;
|
||||
}
|
||||
|
||||
if (!s_timers->is_empty()) {
|
||||
now = Time::now_monotonic_coarse();
|
||||
}
|
||||
|
||||
// Handle expired timers.
|
||||
for (auto& it : *s_timers) {
|
||||
auto& timer = *it.value;
|
||||
if (!timer.has_expired(now))
|
||||
continue;
|
||||
auto owner = timer.owner.strong_ref();
|
||||
if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
||||
&& owner && !owner->is_visible_for_timer_purposes()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Timer {} has expired, sending Core::TimerEvent to {}", timer.timer_id, *owner);
|
||||
|
||||
if (owner)
|
||||
post_event(*owner, make<TimerEvent>(timer.timer_id));
|
||||
if (timer.should_reload) {
|
||||
timer.reload(now);
|
||||
} else {
|
||||
// FIXME: Support removing expired timers that don't want to reload.
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
}
|
||||
|
||||
if (!marked_fd_count)
|
||||
return;
|
||||
|
||||
// Handle file system notifiers by making them normal events.
|
||||
for (auto& notifier : *s_notifiers) {
|
||||
if (notifier->type() == Notifier::Type::Read && FD_ISSET(notifier->fd(), &rfds)) {
|
||||
post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
|
||||
}
|
||||
if (notifier->type() == Notifier::Type::Write && FD_ISSET(notifier->fd(), &wfds)) {
|
||||
post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool EventLoopTimer::has_expired(Time const& now) const
|
||||
{
|
||||
return now > fire_time;
|
||||
}
|
||||
|
||||
void EventLoopTimer::reload(Time const& now)
|
||||
{
|
||||
fire_time = now + interval;
|
||||
}
|
||||
|
||||
Optional<Time> EventLoop::get_next_timer_expiration()
|
||||
{
|
||||
auto now = Time::now_monotonic_coarse();
|
||||
Optional<Time> soonest {};
|
||||
for (auto& it : *s_timers) {
|
||||
auto& fire_time = it.value->fire_time;
|
||||
auto owner = it.value->owner.strong_ref();
|
||||
if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
||||
&& owner && !owner->is_visible_for_timer_purposes()) {
|
||||
continue;
|
||||
}
|
||||
// OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
|
||||
// FIXME: This whole operation could be O(1) with a better data structure.
|
||||
if (fire_time < now)
|
||||
return now;
|
||||
if (!soonest.has_value() || fire_time < soonest.value())
|
||||
soonest = fire_time;
|
||||
}
|
||||
return soonest;
|
||||
current().m_impl->notify_forked_and_in_child();
|
||||
}
|
||||
|
||||
int EventLoop::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
|
||||
{
|
||||
VERIFY_EVENT_LOOP_INITIALIZED();
|
||||
VERIFY(milliseconds >= 0);
|
||||
auto timer = make<EventLoopTimer>();
|
||||
timer->owner = object;
|
||||
timer->interval = Time::from_milliseconds(milliseconds);
|
||||
timer->reload(Time::now_monotonic_coarse());
|
||||
timer->should_reload = should_reload;
|
||||
timer->fire_when_not_visible = fire_when_not_visible;
|
||||
int timer_id = s_id_allocator.with_locked([](auto& allocator) { return allocator->allocate(); });
|
||||
timer->timer_id = timer_id;
|
||||
s_timers->set(timer_id, move(timer));
|
||||
return timer_id;
|
||||
if (!has_event_loop())
|
||||
return 0;
|
||||
return current().m_impl->register_timer(object, milliseconds, should_reload, fire_when_not_visible);
|
||||
}
|
||||
|
||||
bool EventLoop::unregister_timer(int timer_id)
|
||||
{
|
||||
VERIFY_EVENT_LOOP_INITIALIZED();
|
||||
s_id_allocator.with_locked([&](auto& allocator) { allocator->deallocate(timer_id); });
|
||||
auto it = s_timers->find(timer_id);
|
||||
if (it == s_timers->end())
|
||||
if (!has_event_loop())
|
||||
return false;
|
||||
s_timers->remove(it);
|
||||
return true;
|
||||
return current().m_impl->unregister_timer(timer_id);
|
||||
}
|
||||
|
||||
void EventLoop::register_notifier(Badge<Notifier>, Notifier& notifier)
|
||||
{
|
||||
VERIFY_EVENT_LOOP_INITIALIZED();
|
||||
s_notifiers->set(¬ifier);
|
||||
if (!has_event_loop())
|
||||
return;
|
||||
current().m_impl->register_notifier(notifier);
|
||||
}
|
||||
|
||||
void EventLoop::unregister_notifier(Badge<Notifier>, Notifier& notifier)
|
||||
{
|
||||
VERIFY_EVENT_LOOP_INITIALIZED();
|
||||
s_notifiers->remove(¬ifier);
|
||||
if (!has_event_loop())
|
||||
return;
|
||||
current().m_impl->unregister_notifier(notifier);
|
||||
}
|
||||
|
||||
void EventLoop::wake()
|
||||
{
|
||||
dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::wake()");
|
||||
int wake_event = 0;
|
||||
int nwritten = write((*m_wake_pipe_fds)[1], &wake_event, sizeof(wake_event));
|
||||
if (nwritten < 0) {
|
||||
perror("EventLoop::wake: write");
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
m_impl->wake();
|
||||
}
|
||||
|
||||
void EventLoop::deferred_invoke(Function<void()> invokee)
|
||||
|
@ -660,4 +163,9 @@ void deferred_invoke(Function<void()> invokee)
|
|||
EventLoop::current().deferred_invoke(move(invokee));
|
||||
}
|
||||
|
||||
bool EventLoop::was_exit_requested() const
|
||||
{
|
||||
return m_impl->was_exit_requested();
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -18,6 +18,8 @@
|
|||
|
||||
namespace Core {
|
||||
|
||||
class EventLoopImplementation;
|
||||
|
||||
// The event loop enables asynchronous (not parallel or multi-threaded) computing by efficiently handling events from various sources.
|
||||
// Event loops are most important for GUI programs, where the various GUI updates and action callbacks run on the EventLoop,
|
||||
// as well as services, where asynchronous remote procedure calls of multiple clients are handled.
|
||||
|
@ -48,9 +50,6 @@ public:
|
|||
EventLoop();
|
||||
~EventLoop();
|
||||
|
||||
static void initialize_wake_pipes();
|
||||
static bool has_been_instantiated();
|
||||
|
||||
// Pump the event loop until its exit is requested.
|
||||
int exec();
|
||||
|
||||
|
@ -73,7 +72,7 @@ public:
|
|||
|
||||
void quit(int);
|
||||
void unquit();
|
||||
bool was_exit_requested() const { return m_exit_requested; }
|
||||
bool was_exit_requested() const;
|
||||
|
||||
// The registration functions act upon the current loop of the current thread.
|
||||
static int register_timer(Object&, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible);
|
||||
|
@ -102,17 +101,7 @@ private:
|
|||
|
||||
static pid_t s_pid;
|
||||
|
||||
bool m_exit_requested { false };
|
||||
int m_exit_code { 0 };
|
||||
|
||||
static thread_local int s_wake_pipe_fds[2];
|
||||
static thread_local bool s_wake_pipe_initialized;
|
||||
|
||||
// The wake pipe of this event loop needs to be accessible from other threads.
|
||||
int (*m_wake_pipe_fds)[2];
|
||||
|
||||
struct Private;
|
||||
NonnullOwnPtr<Private> m_private;
|
||||
NonnullOwnPtr<EventLoopImplementation> m_impl;
|
||||
};
|
||||
|
||||
void deferred_invoke(Function<void()>);
|
||||
|
|
30
Userland/Libraries/LibCore/EventLoopImplementation.cpp
Normal file
30
Userland/Libraries/LibCore/EventLoopImplementation.cpp
Normal file
|
@ -0,0 +1,30 @@
|
|||
/*
|
||||
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#include <AK/NonnullOwnPtr.h>
|
||||
#include <LibCore/Event.h>
|
||||
#include <LibCore/EventLoopImplementation.h>
|
||||
#include <LibCore/ThreadEventQueue.h>
|
||||
|
||||
namespace Core {
|
||||
|
||||
EventLoopImplementation::EventLoopImplementation()
|
||||
: m_thread_event_queue(ThreadEventQueue::current())
|
||||
{
|
||||
}
|
||||
|
||||
EventLoopImplementation::~EventLoopImplementation() = default;
|
||||
|
||||
void EventLoopImplementation::post_event(Object& receiver, NonnullOwnPtr<Event>&& event)
|
||||
{
|
||||
m_thread_event_queue.post_event(receiver, move(event));
|
||||
|
||||
// Wake up this EventLoopImplementation if this is a cross-thread event posting.
|
||||
if (&ThreadEventQueue::current() != &m_thread_event_queue)
|
||||
wake();
|
||||
}
|
||||
|
||||
}
|
53
Userland/Libraries/LibCore/EventLoopImplementation.h
Normal file
53
Userland/Libraries/LibCore/EventLoopImplementation.h
Normal file
|
@ -0,0 +1,53 @@
|
|||
/*
|
||||
* Copyright (c) 2022-2023, Andreas Kling <kling@serenityos.org>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <AK/Function.h>
|
||||
#include <LibCore/Forward.h>
|
||||
|
||||
namespace Core {
|
||||
|
||||
class ThreadEventQueue;
|
||||
|
||||
class EventLoopImplementation {
|
||||
public:
|
||||
virtual ~EventLoopImplementation();
|
||||
|
||||
enum class PumpMode {
|
||||
WaitForEvents,
|
||||
DontWaitForEvents,
|
||||
};
|
||||
|
||||
void post_event(Object& receiver, NonnullOwnPtr<Event>&&);
|
||||
|
||||
virtual int exec() = 0;
|
||||
virtual size_t pump(PumpMode) = 0;
|
||||
virtual void quit(int) = 0;
|
||||
virtual void wake() = 0;
|
||||
|
||||
virtual void deferred_invoke(Function<void()>) = 0;
|
||||
|
||||
virtual int register_timer(Object&, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible) = 0;
|
||||
virtual bool unregister_timer(int timer_id) = 0;
|
||||
|
||||
virtual void register_notifier(Notifier&) = 0;
|
||||
virtual void unregister_notifier(Notifier&) = 0;
|
||||
|
||||
// FIXME: These APIs only exist for obscure use-cases inside SerenityOS. Try to get rid of them.
|
||||
virtual void unquit() = 0;
|
||||
virtual bool was_exit_requested() const = 0;
|
||||
virtual void notify_forked_and_in_child() = 0;
|
||||
virtual int register_signal(int signal_number, Function<void(int)> handler) = 0;
|
||||
virtual void unregister_signal(int handler_id) = 0;
|
||||
|
||||
protected:
|
||||
EventLoopImplementation();
|
||||
|
||||
ThreadEventQueue& m_thread_event_queue;
|
||||
};
|
||||
|
||||
}
|
525
Userland/Libraries/LibCore/EventLoopImplementationUnix.cpp
Normal file
525
Userland/Libraries/LibCore/EventLoopImplementationUnix.cpp
Normal file
|
@ -0,0 +1,525 @@
|
|||
/*
|
||||
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#include <AK/IDAllocator.h>
|
||||
#include <AK/Singleton.h>
|
||||
#include <AK/TemporaryChange.h>
|
||||
#include <AK/Time.h>
|
||||
#include <AK/WeakPtr.h>
|
||||
#include <LibCore/Event.h>
|
||||
#include <LibCore/EventLoopImplementationUnix.h>
|
||||
#include <LibCore/Notifier.h>
|
||||
#include <LibCore/Object.h>
|
||||
#include <LibCore/Socket.h>
|
||||
#include <LibCore/System.h>
|
||||
#include <LibCore/ThreadEventQueue.h>
|
||||
#include <sys/select.h>
|
||||
#include <unistd.h>
|
||||
|
||||
namespace Core {
|
||||
|
||||
struct ThreadData;
|
||||
|
||||
namespace {
|
||||
thread_local ThreadData* s_thread_data;
|
||||
}
|
||||
|
||||
struct EventLoopTimer {
|
||||
int timer_id { 0 };
|
||||
Time interval;
|
||||
Time fire_time;
|
||||
bool should_reload { false };
|
||||
TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
|
||||
WeakPtr<Object> owner;
|
||||
|
||||
void reload(Time const& now) { fire_time = now + interval; }
|
||||
bool has_expired(Time const& now) const { return now > fire_time; }
|
||||
};
|
||||
|
||||
struct ThreadData {
|
||||
static ThreadData& the()
|
||||
{
|
||||
if (!s_thread_data) {
|
||||
// FIXME: Don't leak this.
|
||||
s_thread_data = new ThreadData;
|
||||
}
|
||||
return *s_thread_data;
|
||||
}
|
||||
|
||||
ThreadData()
|
||||
{
|
||||
pid = getpid();
|
||||
initialize_wake_pipe();
|
||||
}
|
||||
|
||||
void initialize_wake_pipe()
|
||||
{
|
||||
if (wake_pipe_fds[0] != -1)
|
||||
close(wake_pipe_fds[0]);
|
||||
if (wake_pipe_fds[1] != -1)
|
||||
close(wake_pipe_fds[1]);
|
||||
|
||||
#if defined(SOCK_NONBLOCK)
|
||||
int rc = pipe2(wake_pipe_fds, O_CLOEXEC);
|
||||
#else
|
||||
int rc = pipe(wake_pipe_fds);
|
||||
fcntl(wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
|
||||
fcntl(wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
|
||||
|
||||
#endif
|
||||
VERIFY(rc == 0);
|
||||
}
|
||||
|
||||
// Each thread has its own timers, notifiers and a wake pipe.
|
||||
HashMap<int, NonnullOwnPtr<EventLoopTimer>> timers;
|
||||
HashTable<Notifier*> notifiers;
|
||||
|
||||
// The wake pipe is used to notify another event loop that someone has called wake(), or a signal has been received.
|
||||
// wake() writes 0i32 into the pipe, signals write the signal number (guaranteed non-zero).
|
||||
int wake_pipe_fds[2] { -1, -1 };
|
||||
|
||||
pid_t pid { 0 };
|
||||
|
||||
IDAllocator id_allocator;
|
||||
};
|
||||
|
||||
EventLoopImplementationUnix::EventLoopImplementationUnix()
|
||||
: m_wake_pipe_fds(&ThreadData::the().wake_pipe_fds)
|
||||
{
|
||||
}
|
||||
|
||||
EventLoopImplementationUnix::~EventLoopImplementationUnix() = default;
|
||||
|
||||
int EventLoopImplementationUnix::exec()
|
||||
{
|
||||
for (;;) {
|
||||
if (m_exit_requested)
|
||||
return m_exit_code;
|
||||
pump(PumpMode::WaitForEvents);
|
||||
}
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
|
||||
size_t EventLoopImplementationUnix::pump(PumpMode mode)
|
||||
{
|
||||
// We can only pump the event loop of the current thread.
|
||||
VERIFY(&m_thread_event_queue == &ThreadEventQueue::current());
|
||||
|
||||
wait_for_events(mode);
|
||||
return m_thread_event_queue.process();
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::quit(int code)
|
||||
{
|
||||
m_exit_requested = true;
|
||||
m_exit_code = code;
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::unquit()
|
||||
{
|
||||
m_exit_requested = false;
|
||||
m_exit_code = 0;
|
||||
}
|
||||
|
||||
bool EventLoopImplementationUnix::was_exit_requested() const
|
||||
{
|
||||
return m_exit_requested;
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::wake()
|
||||
{
|
||||
int wake_event = 0;
|
||||
MUST(Core::System::write((*m_wake_pipe_fds)[1], { &wake_event, sizeof(wake_event) }));
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::deferred_invoke(Function<void()> invokee)
|
||||
{
|
||||
// FIXME: Get rid of the useless DeferredInvocationContext object.
|
||||
auto context = DeferredInvocationContext::construct();
|
||||
post_event(context, make<DeferredInvocationEvent>(context, move(invokee)));
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::wait_for_events(PumpMode mode)
|
||||
{
|
||||
auto& thread_data = ThreadData::the();
|
||||
|
||||
fd_set read_fds {};
|
||||
fd_set write_fds {};
|
||||
retry:
|
||||
int max_fd = 0;
|
||||
auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
|
||||
FD_SET(fd, &set);
|
||||
if (fd > max_fd)
|
||||
max_fd = fd;
|
||||
};
|
||||
|
||||
int max_fd_added = -1;
|
||||
// The wake pipe informs us of POSIX signals as well as manual calls to wake()
|
||||
add_fd_to_set(thread_data.wake_pipe_fds[0], read_fds);
|
||||
max_fd = max(max_fd, max_fd_added);
|
||||
|
||||
for (auto& notifier : thread_data.notifiers) {
|
||||
if (notifier->type() == Notifier::Type::Read)
|
||||
add_fd_to_set(notifier->fd(), read_fds);
|
||||
if (notifier->type() == Notifier::Type::Write)
|
||||
add_fd_to_set(notifier->fd(), write_fds);
|
||||
if (notifier->type() == Notifier::Type::Exceptional)
|
||||
TODO();
|
||||
}
|
||||
|
||||
bool has_pending_events = ThreadEventQueue::current().has_pending_events();
|
||||
|
||||
// Figure out how long to wait at maximum.
|
||||
// This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
|
||||
Time now;
|
||||
struct timeval timeout = { 0, 0 };
|
||||
bool should_wait_forever = false;
|
||||
if (mode == PumpMode::WaitForEvents && !has_pending_events) {
|
||||
auto next_timer_expiration = get_next_timer_expiration();
|
||||
if (next_timer_expiration.has_value()) {
|
||||
now = Time::now_monotonic_coarse();
|
||||
auto computed_timeout = next_timer_expiration.value() - now;
|
||||
if (computed_timeout.is_negative())
|
||||
computed_timeout = Time::zero();
|
||||
timeout = computed_timeout.to_timeval();
|
||||
} else {
|
||||
should_wait_forever = true;
|
||||
}
|
||||
}
|
||||
|
||||
try_select_again:
|
||||
// select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
|
||||
int marked_fd_count = select(max_fd + 1, &read_fds, &write_fds, nullptr, should_wait_forever ? nullptr : &timeout);
|
||||
// Because POSIX, we might spuriously return from select() with EINTR; just select again.
|
||||
if (marked_fd_count < 0) {
|
||||
int saved_errno = errno;
|
||||
if (saved_errno == EINTR) {
|
||||
if (m_exit_requested)
|
||||
return;
|
||||
goto try_select_again;
|
||||
}
|
||||
dbgln("EventLoopImplementationUnix::wait_for_events: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
|
||||
// We woke up due to a call to wake() or a POSIX signal.
|
||||
// Handle signals and see whether we need to handle events as well.
|
||||
if (FD_ISSET(thread_data.wake_pipe_fds[0], &read_fds)) {
|
||||
int wake_events[8];
|
||||
ssize_t nread;
|
||||
// We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
|
||||
// but we get interrupted. Therefore, just retry while we were interrupted.
|
||||
do {
|
||||
errno = 0;
|
||||
nread = read(thread_data.wake_pipe_fds[0], wake_events, sizeof(wake_events));
|
||||
if (nread == 0)
|
||||
break;
|
||||
} while (nread < 0 && errno == EINTR);
|
||||
if (nread < 0) {
|
||||
perror("EventLoopImplementationUnix::wait_for_events: read from wake pipe");
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
VERIFY(nread > 0);
|
||||
bool wake_requested = false;
|
||||
int event_count = nread / sizeof(wake_events[0]);
|
||||
for (int i = 0; i < event_count; i++) {
|
||||
if (wake_events[i] != 0)
|
||||
dispatch_signal(wake_events[i]);
|
||||
else
|
||||
wake_requested = true;
|
||||
}
|
||||
|
||||
if (!wake_requested && nread == sizeof(wake_events))
|
||||
goto retry;
|
||||
}
|
||||
|
||||
if (!thread_data.timers.is_empty()) {
|
||||
now = Time::now_monotonic_coarse();
|
||||
}
|
||||
|
||||
// Handle expired timers.
|
||||
for (auto& it : thread_data.timers) {
|
||||
auto& timer = *it.value;
|
||||
if (!timer.has_expired(now))
|
||||
continue;
|
||||
auto owner = timer.owner.strong_ref();
|
||||
if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
||||
&& owner && !owner->is_visible_for_timer_purposes()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (owner)
|
||||
ThreadEventQueue::current().post_event(*owner, make<TimerEvent>(timer.timer_id));
|
||||
if (timer.should_reload) {
|
||||
timer.reload(now);
|
||||
} else {
|
||||
// FIXME: Support removing expired timers that don't want to reload.
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
}
|
||||
|
||||
if (!marked_fd_count)
|
||||
return;
|
||||
|
||||
// Handle file system notifiers by making them normal events.
|
||||
for (auto& notifier : thread_data.notifiers) {
|
||||
if (notifier->type() == Notifier::Type::Read && FD_ISSET(notifier->fd(), &read_fds)) {
|
||||
ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
|
||||
}
|
||||
if (notifier->type() == Notifier::Type::Write && FD_ISSET(notifier->fd(), &write_fds)) {
|
||||
ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class SignalHandlers : public RefCounted<SignalHandlers> {
|
||||
AK_MAKE_NONCOPYABLE(SignalHandlers);
|
||||
AK_MAKE_NONMOVABLE(SignalHandlers);
|
||||
|
||||
public:
|
||||
SignalHandlers(int signal_number, void (*handle_signal)(int));
|
||||
~SignalHandlers();
|
||||
|
||||
void dispatch();
|
||||
int add(Function<void(int)>&& handler);
|
||||
bool remove(int handler_id);
|
||||
|
||||
bool is_empty() const
|
||||
{
|
||||
if (m_calling_handlers) {
|
||||
for (auto& handler : m_handlers_pending) {
|
||||
if (handler.value)
|
||||
return false; // an add is pending
|
||||
}
|
||||
}
|
||||
return m_handlers.is_empty();
|
||||
}
|
||||
|
||||
bool have(int handler_id) const
|
||||
{
|
||||
if (m_calling_handlers) {
|
||||
auto it = m_handlers_pending.find(handler_id);
|
||||
if (it != m_handlers_pending.end()) {
|
||||
if (!it->value)
|
||||
return false; // a deletion is pending
|
||||
}
|
||||
}
|
||||
return m_handlers.contains(handler_id);
|
||||
}
|
||||
|
||||
int m_signal_number;
|
||||
void (*m_original_handler)(int); // TODO: can't use sighandler_t?
|
||||
HashMap<int, Function<void(int)>> m_handlers;
|
||||
HashMap<int, Function<void(int)>> m_handlers_pending;
|
||||
bool m_calling_handlers { false };
|
||||
};
|
||||
|
||||
struct SignalHandlersInfo {
|
||||
HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
|
||||
int next_signal_id { 0 };
|
||||
};
|
||||
|
||||
static Singleton<SignalHandlersInfo> s_signals;
|
||||
template<bool create_if_null = true>
|
||||
inline SignalHandlersInfo* signals_info()
|
||||
{
|
||||
return s_signals.ptr();
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::dispatch_signal(int signal_number)
|
||||
{
|
||||
auto& info = *signals_info();
|
||||
auto handlers = info.signal_handlers.find(signal_number);
|
||||
if (handlers != info.signal_handlers.end()) {
|
||||
// Make sure we bump the ref count while dispatching the handlers!
|
||||
// This allows a handler to unregister/register while the handlers
|
||||
// are being called!
|
||||
auto handler = handlers->value;
|
||||
handler->dispatch();
|
||||
}
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::notify_forked_and_in_child()
|
||||
{
|
||||
auto& thread_data = ThreadData::the();
|
||||
thread_data.timers.clear();
|
||||
thread_data.notifiers.clear();
|
||||
thread_data.initialize_wake_pipe();
|
||||
if (auto* info = signals_info<false>()) {
|
||||
info->signal_handlers.clear();
|
||||
info->next_signal_id = 0;
|
||||
}
|
||||
thread_data.pid = getpid();
|
||||
}
|
||||
|
||||
Optional<Time> EventLoopImplementationUnix::get_next_timer_expiration()
|
||||
{
|
||||
auto now = Time::now_monotonic_coarse();
|
||||
Optional<Time> soonest {};
|
||||
for (auto& it : ThreadData::the().timers) {
|
||||
auto& fire_time = it.value->fire_time;
|
||||
auto owner = it.value->owner.strong_ref();
|
||||
if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
||||
&& owner && !owner->is_visible_for_timer_purposes()) {
|
||||
continue;
|
||||
}
|
||||
// OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
|
||||
// FIXME: This whole operation could be O(1) with a better data structure.
|
||||
if (fire_time < now)
|
||||
return now;
|
||||
if (!soonest.has_value() || fire_time < soonest.value())
|
||||
soonest = fire_time;
|
||||
}
|
||||
return soonest;
|
||||
}
|
||||
|
||||
SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
|
||||
: m_signal_number(signal_number)
|
||||
, m_original_handler(signal(signal_number, handle_signal))
|
||||
{
|
||||
}
|
||||
|
||||
SignalHandlers::~SignalHandlers()
|
||||
{
|
||||
signal(m_signal_number, m_original_handler);
|
||||
}
|
||||
|
||||
void SignalHandlers::dispatch()
|
||||
{
|
||||
TemporaryChange change(m_calling_handlers, true);
|
||||
for (auto& handler : m_handlers)
|
||||
handler.value(m_signal_number);
|
||||
if (!m_handlers_pending.is_empty()) {
|
||||
// Apply pending adds/removes
|
||||
for (auto& handler : m_handlers_pending) {
|
||||
if (handler.value) {
|
||||
auto result = m_handlers.set(handler.key, move(handler.value));
|
||||
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
|
||||
} else {
|
||||
m_handlers.remove(handler.key);
|
||||
}
|
||||
}
|
||||
m_handlers_pending.clear();
|
||||
}
|
||||
}
|
||||
|
||||
int SignalHandlers::add(Function<void(int)>&& handler)
|
||||
{
|
||||
int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
|
||||
if (m_calling_handlers)
|
||||
m_handlers_pending.set(id, move(handler));
|
||||
else
|
||||
m_handlers.set(id, move(handler));
|
||||
return id;
|
||||
}
|
||||
|
||||
bool SignalHandlers::remove(int handler_id)
|
||||
{
|
||||
VERIFY(handler_id != 0);
|
||||
if (m_calling_handlers) {
|
||||
auto it = m_handlers.find(handler_id);
|
||||
if (it != m_handlers.end()) {
|
||||
// Mark pending remove
|
||||
m_handlers_pending.set(handler_id, {});
|
||||
return true;
|
||||
}
|
||||
it = m_handlers_pending.find(handler_id);
|
||||
if (it != m_handlers_pending.end()) {
|
||||
if (!it->value)
|
||||
return false; // already was marked as deleted
|
||||
it->value = nullptr;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return m_handlers.remove(handler_id);
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::handle_signal(int signal_number)
|
||||
{
|
||||
VERIFY(signal_number != 0);
|
||||
auto& thread_data = ThreadData::the();
|
||||
// We MUST check if the current pid still matches, because there
|
||||
// is a window between fork() and exec() where a signal delivered
|
||||
// to our fork could be inadvertently routed to the parent process!
|
||||
if (getpid() == thread_data.pid) {
|
||||
int nwritten = write(thread_data.wake_pipe_fds[1], &signal_number, sizeof(signal_number));
|
||||
if (nwritten < 0) {
|
||||
perror("EventLoopImplementationUnix::register_signal: write");
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
} else {
|
||||
// We're a fork who received a signal, reset thread_data.pid.
|
||||
thread_data.pid = getpid();
|
||||
}
|
||||
}
|
||||
|
||||
int EventLoopImplementationUnix::register_signal(int signal_number, Function<void(int)> handler)
|
||||
{
|
||||
VERIFY(signal_number != 0);
|
||||
auto& info = *signals_info();
|
||||
auto handlers = info.signal_handlers.find(signal_number);
|
||||
if (handlers == info.signal_handlers.end()) {
|
||||
auto signal_handlers = adopt_ref(*new SignalHandlers(signal_number, EventLoopImplementationUnix::handle_signal));
|
||||
auto handler_id = signal_handlers->add(move(handler));
|
||||
info.signal_handlers.set(signal_number, move(signal_handlers));
|
||||
return handler_id;
|
||||
} else {
|
||||
return handlers->value->add(move(handler));
|
||||
}
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::unregister_signal(int handler_id)
|
||||
{
|
||||
VERIFY(handler_id != 0);
|
||||
int remove_signal_number = 0;
|
||||
auto& info = *signals_info();
|
||||
for (auto& h : info.signal_handlers) {
|
||||
auto& handlers = *h.value;
|
||||
if (handlers.remove(handler_id)) {
|
||||
if (handlers.is_empty())
|
||||
remove_signal_number = handlers.m_signal_number;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (remove_signal_number != 0)
|
||||
info.signal_handlers.remove(remove_signal_number);
|
||||
}
|
||||
|
||||
int EventLoopImplementationUnix::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
|
||||
{
|
||||
VERIFY(milliseconds >= 0);
|
||||
auto& thread_data = ThreadData::the();
|
||||
auto timer = make<EventLoopTimer>();
|
||||
timer->owner = object;
|
||||
timer->interval = Time::from_milliseconds(milliseconds);
|
||||
timer->reload(Time::now_monotonic_coarse());
|
||||
timer->should_reload = should_reload;
|
||||
timer->fire_when_not_visible = fire_when_not_visible;
|
||||
int timer_id = thread_data.id_allocator.allocate();
|
||||
timer->timer_id = timer_id;
|
||||
thread_data.timers.set(timer_id, move(timer));
|
||||
return timer_id;
|
||||
}
|
||||
|
||||
bool EventLoopImplementationUnix::unregister_timer(int timer_id)
|
||||
{
|
||||
auto& thread_data = ThreadData::the();
|
||||
thread_data.id_allocator.deallocate(timer_id);
|
||||
return thread_data.timers.remove(timer_id);
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::register_notifier(Notifier& notifier)
|
||||
{
|
||||
ThreadData::the().notifiers.set(¬ifier);
|
||||
}
|
||||
|
||||
void EventLoopImplementationUnix::unregister_notifier(Notifier& notifier)
|
||||
{
|
||||
ThreadData::the().notifiers.remove(¬ifier);
|
||||
}
|
||||
|
||||
}
|
51
Userland/Libraries/LibCore/EventLoopImplementationUnix.h
Normal file
51
Userland/Libraries/LibCore/EventLoopImplementationUnix.h
Normal file
|
@ -0,0 +1,51 @@
|
|||
/*
|
||||
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <LibCore/EventLoopImplementation.h>
|
||||
|
||||
namespace Core {
|
||||
|
||||
class EventLoopImplementationUnix final : public EventLoopImplementation {
|
||||
public:
|
||||
EventLoopImplementationUnix();
|
||||
virtual ~EventLoopImplementationUnix();
|
||||
|
||||
virtual int exec() override;
|
||||
virtual size_t pump(PumpMode) override;
|
||||
virtual void quit(int) override;
|
||||
|
||||
virtual void wake() override;
|
||||
|
||||
virtual void deferred_invoke(Function<void()>) override;
|
||||
|
||||
virtual int register_timer(Object&, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible) override;
|
||||
virtual bool unregister_timer(int timer_id) override;
|
||||
|
||||
virtual void register_notifier(Notifier&) override;
|
||||
virtual void unregister_notifier(Notifier&) override;
|
||||
|
||||
virtual void unquit() override;
|
||||
virtual bool was_exit_requested() const override;
|
||||
virtual void notify_forked_and_in_child() override;
|
||||
virtual int register_signal(int signal_number, Function<void(int)> handler) override;
|
||||
virtual void unregister_signal(int handler_id) override;
|
||||
|
||||
private:
|
||||
void wait_for_events(PumpMode);
|
||||
void dispatch_signal(int signal_number);
|
||||
static void handle_signal(int signal_number);
|
||||
static Optional<Time> get_next_timer_expiration();
|
||||
|
||||
bool m_exit_requested { false };
|
||||
int m_exit_code { 0 };
|
||||
|
||||
// The wake pipe of this event loop needs to be accessible from other threads.
|
||||
int (*m_wake_pipe_fds)[2];
|
||||
};
|
||||
|
||||
}
|
|
@ -149,7 +149,9 @@ void Object::stop_timer()
|
|||
if (!m_timer_id)
|
||||
return;
|
||||
bool success = Core::EventLoop::unregister_timer(m_timer_id);
|
||||
VERIFY(success);
|
||||
if (!success) {
|
||||
dbgln("{} {:p} could not unregister timer {}", class_name(), this, m_timer_id);
|
||||
}
|
||||
m_timer_id = 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -92,7 +92,7 @@ size_t ThreadEventQueue::process()
|
|||
case Event::Quit:
|
||||
VERIFY_NOT_REACHED();
|
||||
default:
|
||||
dbgln("ThreadEventQueue::process: Event of type {} with no receiver", event.type());
|
||||
// Receiver disappeared, drop the event on the floor.
|
||||
break;
|
||||
}
|
||||
} else if (event.type() == Event::Type::DeferredInvoke) {
|
||||
|
|
|
@ -106,10 +106,7 @@ ErrorOr<void> ConnectionBase::post_message(MessageBuffer buffer)
|
|||
dbgln("LibIPC::Connection FIXME Warning, needed {} writes needed to send message of size {}B, this is pretty bad, as it spins on the EventLoop", writes_done, initial_size);
|
||||
}
|
||||
|
||||
// Note: This disables responsiveness detection when an event loop is absent.
|
||||
// There are no users which both need this feature but don't have an event loop.
|
||||
if (Core::EventLoop::has_been_instantiated())
|
||||
m_responsiveness_timer->start();
|
||||
m_responsiveness_timer->start();
|
||||
return {};
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue