|
@@ -1,62 +0,0 @@
|
|
-/*
|
|
|
|
- * Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
|
|
|
|
- *
|
|
|
|
- * SPDX-License-Identifier: BSD-2-Clause
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-#include "FFT.h"
|
|
|
|
-#include <AK/Complex.h>
|
|
|
|
-#include <AK/Math.h>
|
|
|
|
-
|
|
|
|
-namespace LibDSP {
|
|
|
|
-
|
|
|
|
-// This function uses the input vector as output too. therefore, if you wish to
|
|
|
|
-// leave it intact, pass a copy to this function
|
|
|
|
-//
|
|
|
|
-// The sampling frequency must be more than twice the frequency to resolve.
|
|
|
|
-// The sample window must be at least large enough to reflect the periodicity
|
|
|
|
-// of the smallest frequency to be resolved.
|
|
|
|
-//
|
|
|
|
-// For example, to resolve a 10 KHz and a 2 Hz sine waves we need at least
|
|
|
|
-// a samplerate of 20 KHz and a window of 0.5 seconds
|
|
|
|
-//
|
|
|
|
-// If invert is true, this function computes the inverse discrete fourier transform.
|
|
|
|
-//
|
|
|
|
-// The data vector must be a power of 2
|
|
|
|
-// Adapted from https://cp-algorithms.com/algebra/fft.html
|
|
|
|
-void fft(Vector<Complex<double>>& sample_data, bool invert)
|
|
|
|
-{
|
|
|
|
- int n = sample_data.size();
|
|
|
|
- auto data = sample_data.data();
|
|
|
|
-
|
|
|
|
- for (int i = 1, j = 0; i < n; i++) {
|
|
|
|
- int bit = n >> 1;
|
|
|
|
- for (; j & bit; bit >>= 1)
|
|
|
|
- j ^= bit;
|
|
|
|
- j ^= bit;
|
|
|
|
-
|
|
|
|
- if (i < j)
|
|
|
|
- swap(data[i], data[j]);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (int len = 2; len <= n; len <<= 1) {
|
|
|
|
- double ang = 2 * AK::Pi<double> / len * (invert ? -1 : 1);
|
|
|
|
- Complex<double> wlen(AK::cos(ang), AK::sin(ang));
|
|
|
|
- for (int i = 0; i < n; i += len) {
|
|
|
|
- Complex<double> w = { 1., 0. };
|
|
|
|
- for (int j = 0; j < len / 2; j++) {
|
|
|
|
- Complex<double> u = data[i + j], v = data[i + j + len / 2] * w;
|
|
|
|
- data[i + j] = u + v;
|
|
|
|
- data[i + j + len / 2] = u - v;
|
|
|
|
- w *= wlen;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (invert) {
|
|
|
|
- for (int i = 0; i < n; i++)
|
|
|
|
- data[i] /= n;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-}
|
|
|