ladybird/Kernel/Task.cpp

986 lines
26 KiB
C++
Raw Normal View History

#include "types.h"
#include "Task.h"
#include "kmalloc.h"
#include "VGA.h"
#include "StdLib.h"
#include "i386.h"
#include "system.h"
2018-10-18 08:28:09 +00:00
#include <VirtualFileSystem/FileHandle.h>
#include <VirtualFileSystem/VirtualFileSystem.h>
#include <ELFLoader/ExecSpace.h>
#include "MemoryManager.h"
#include "errno.h"
#include "i8253.h"
#include "RTC.h"
#include "ProcFileSystem.h"
#include <AK/StdLib.h>
//#define DEBUG_IO
//#define TASK_DEBUG
static const DWORD defaultStackSize = 16384;
Task* current;
Task* s_kernelTask;
static pid_t next_pid;
2018-10-17 08:55:43 +00:00
static InlineLinkedList<Task>* s_tasks;
static InlineLinkedList<Task>* s_deadTasks;
2018-10-26 07:54:29 +00:00
static String* s_hostname;
static String& hostnameStorage(InterruptDisabler&)
2018-10-26 07:54:29 +00:00
{
ASSERT(s_hostname);
return *s_hostname;
}
static String getHostname()
{
InterruptDisabler disabler;
return hostnameStorage(disabler).isolatedCopy();
}
static bool contextSwitch(Task*);
static void redoKernelTaskTSS()
{
if (!s_kernelTask->selector())
s_kernelTask->setSelector(allocateGDTEntry());
auto& tssDescriptor = getGDTEntry(s_kernelTask->selector());
tssDescriptor.setBase(&s_kernelTask->tss());
tssDescriptor.setLimit(0xffff);
tssDescriptor.dpl = 0;
tssDescriptor.segment_present = 1;
tssDescriptor.granularity = 1;
tssDescriptor.zero = 0;
tssDescriptor.operation_size = 1;
tssDescriptor.descriptor_type = 0;
tssDescriptor.type = 9;
flushGDT();
}
void Task::prepForIRETToNewTask()
{
redoKernelTaskTSS();
s_kernelTask->tss().backlink = current->selector();
loadTaskRegister(s_kernelTask->selector());
}
void Task::initialize()
{
current = nullptr;
next_pid = 0;
2018-10-17 08:55:43 +00:00
s_tasks = new InlineLinkedList<Task>;
s_deadTasks = new InlineLinkedList<Task>;
s_kernelTask = Task::createKernelTask(nullptr, "colonel");
2018-10-26 07:54:29 +00:00
s_hostname = new String("birx");
redoKernelTaskTSS();
loadTaskRegister(s_kernelTask->selector());
}
#ifdef TASK_SANITY_CHECKS
void Task::checkSanity(const char* msg)
{
char ch = current->name()[0];
kprintf("<%p> %s{%u}%b [%d] :%b: sanity check <%s>\n",
current->name().characters(),
current->name().characters(),
current->name().length(),
current->name()[current->name().length() - 1],
current->pid(), ch, msg ? msg : "");
ASSERT((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'));
}
#endif
void Task::allocateLDT()
{
ASSERT(!m_tss.ldt);
static const WORD numLDTEntries = 4;
WORD newLDTSelector = allocateGDTEntry();
m_ldtEntries = new Descriptor[numLDTEntries];
2018-10-18 12:53:00 +00:00
#if 0
kprintf("new ldt selector = %x\n", newLDTSelector);
kprintf("new ldt table at = %p\n", m_ldtEntries);
kprintf("new ldt table size = %u\n", (numLDTEntries * 8) - 1);
#endif
Descriptor& ldt = getGDTEntry(newLDTSelector);
ldt.setBase(m_ldtEntries);
ldt.setLimit(numLDTEntries * 8 - 1);
ldt.dpl = 0;
ldt.segment_present = 1;
ldt.granularity = 0;
ldt.zero = 0;
ldt.operation_size = 1;
ldt.descriptor_type = 0;
ldt.type = Descriptor::LDT;
m_tss.ldt = newLDTSelector;
}
Vector<Task*> Task::allTasks()
{
2018-10-25 08:33:10 +00:00
InterruptDisabler disabler;
Vector<Task*> tasks;
tasks.ensureCapacity(s_tasks->sizeSlow());
for (auto* task = s_tasks->head(); task; task = task->next())
tasks.append(task);
return tasks;
}
2018-10-18 12:53:00 +00:00
Task::Region* Task::allocateRegion(size_t size, String&& name)
{
2018-10-18 12:53:00 +00:00
// FIXME: This needs sanity checks. What if this overlaps existing regions?
auto zone = MM.createZone(size);
2018-10-18 12:53:00 +00:00
ASSERT(zone);
m_regions.append(adopt(*new Region(m_nextRegion, size, move(zone), move(name))));
2018-10-18 12:53:00 +00:00
m_nextRegion = m_nextRegion.offset(size).offset(16384);
return m_regions.last().ptr();
}
bool Task::deallocateRegion(Region& region)
{
InterruptDisabler disabler;
for (size_t i = 0; i < m_regions.size(); ++i) {
if (m_regions[i].ptr() == &region) {
// FIXME: This seems racy.
MM.unmapRegion(*this, region);
m_regions.remove(i);
return true;
}
}
return false;
}
Task::Region* Task::regionFromRange(LinearAddress laddr, size_t size)
{
for (auto& region : m_regions) {
if (region->linearAddress == laddr && region->size == size)
return region.ptr();
}
return nullptr;
}
void* Task::sys$mmap(void* addr, size_t size)
{
// FIXME: Implement mapping at a client-preferred address.
ASSERT(addr == nullptr);
auto* region = allocateRegion(size, "mmap");
if (!region)
return (void*)-1;
MM.mapRegion(*this, *region);
return (void*)region->linearAddress.get();
}
int Task::sys$munmap(void* addr, size_t size)
{
auto* region = regionFromRange(LinearAddress((dword)addr), size);
if (!region)
return -1;
if (!deallocateRegion(*region))
return -1;
return 0;
}
#define VALIDATE_USER_BUFFER(b, s) \
do { \
LinearAddress laddr((dword)(b)); \
if (!isValidAddressForUser(laddr) || !isValidAddressForUser(laddr.offset((s) - 1))) \
return -EFAULT; \
} while(0)
2018-10-26 07:54:29 +00:00
int Task::sys$gethostname(char* buffer, size_t size)
{
VALIDATE_USER_BUFFER(buffer, size);
auto hostname = getHostname();
if (size < (hostname.length() + 1))
2018-10-26 07:54:29 +00:00
return -ENAMETOOLONG;
memcpy(buffer, hostname.characters(), size);
return 0;
2018-10-26 07:54:29 +00:00
}
int Task::sys$spawn(const char* path, const char** args)
{
int error = 0;
auto* child = Task::createUserTask(path, m_uid, m_gid, m_pid, error, args);
if (child)
return child->pid();
return error;
}
Task* Task::createUserTask(const String& path, uid_t uid, gid_t gid, pid_t parentPID, int& error, const char** args)
{
auto parts = path.split('/');
if (parts.isEmpty()) {
error = -ENOENT;
return nullptr;
}
RetainPtr<VirtualFileSystem::Node> cwd;
{
InterruptDisabler disabler;
if (auto* parentTask = Task::fromPID(parentPID))
cwd = parentTask->m_cwd.copyRef();
}
auto handle = VirtualFileSystem::the().open(path, cwd.ptr());
if (!handle) {
error = -ENOENT; // FIXME: Get a more detailed error from VFS.
return nullptr;
}
if (!handle->metadata().mayExecute(uid, gid)) {
error = -EACCES;
return nullptr;
}
auto elfData = handle->readEntireFile();
if (!elfData) {
error = -EIO; // FIXME: Get a more detailed error from VFS.
return nullptr;
}
Vector<String> taskArguments;
if (args) {
for (size_t i = 0; args[i]; ++i) {
taskArguments.append(args[i]);
}
} else {
taskArguments.append(parts.last());
}
InterruptDisabler disabler; // FIXME: Get rid of this, jesus christ. This "critical" section is HUGE.
Task* t = new Task(parts.takeLast(), uid, gid, parentPID, Ring3);
t->m_arguments = move(taskArguments);
ExecSpace space;
Region* region = nullptr;
space.hookableAlloc = [&] (const String& name, size_t size) {
if (!size)
return (void*)nullptr;
size = ((size / 4096) + 1) * 4096;
region = t->allocateRegion(size, String(name));
ASSERT(region);
MM.mapRegion(*t, *region);
return (void*)region->linearAddress.asPtr();
};
bool success = space.loadELF(move(elfData));
if (!success) {
// FIXME: This is ugly. If we need to do this, it should be at a different level.
MM.unmapRegionsForTask(*t);
MM.mapRegionsForTask(*current);
delete t;
kprintf("Failure loading ELF %s\n", path.characters());
error = -ENOEXEC;
return nullptr;
}
space.forEachArea([&] (const String& name, dword offset, size_t size, LinearAddress laddr) {
if (laddr.isNull())
return;
dword roundedOffset = offset & 0xfffff000;
size_t roundedSize = 4096 * ceilDiv((offset - roundedOffset) + size, 4096u);
LinearAddress roundedLaddr = laddr;
roundedLaddr.mask(0xfffff000);
t->m_subregions.append(make<Subregion>(*region, roundedOffset, roundedSize, roundedLaddr, String(name)));
#ifdef SUBREGION_DEBUG
kprintf(" req subregion %s (offset: %u, size: %u) @ %p\n", name.characters(), offset, size, laddr.get());
kprintf("actual subregion %s (offset: %u, size: %u) @ %p\n", name.characters(), roundedOffset, roundedSize, roundedLaddr.get());
#endif
MM.mapSubregion(*t, *t->m_subregions.last());
});
t->m_tss.eip = (dword)space.symbolPtr("_start");
if (!t->m_tss.eip) {
// FIXME: This is ugly. If we need to do this, it should be at a different level.
MM.unmapRegionsForTask(*t);
MM.mapRegionsForTask(*current);
delete t;
error = -ENOEXEC;
return nullptr;
}
// FIXME: This is ugly. If we need to do this, it should be at a different level.
MM.unmapRegionsForTask(*t);
MM.mapRegionsForTask(*current);
s_tasks->prepend(t);
system.nprocess++;
#ifdef TASK_DEBUG
kprintf("Task %u (%s) spawned @ %p\n", t->pid(), t->name().characters(), t->m_tss.eip);
#endif
error = 0;
return t;
}
int Task::sys$get_arguments(int* argc, char*** argv)
{
auto* region = allocateRegion(4096, "argv");
if (!region)
return -ENOMEM;
MM.mapRegion(*this, *region);
char* argpage = (char*)region->linearAddress.get();
*argc = m_arguments.size();
*argv = (char**)argpage;
char* bufptr = argpage + (sizeof(char*) * m_arguments.size());
for (size_t i = 0; i < m_arguments.size(); ++i) {
(*argv)[i] = bufptr;
memcpy(bufptr, m_arguments[i].characters(), m_arguments[i].length());
bufptr += m_arguments[i].length();
*(bufptr++) = '\0';
}
return 0;
}
Task* Task::createKernelTask(void (*e)(), String&& name)
{
Task* task = new Task(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
task->m_tss.eip = (dword)e;
if (task->pid() != 0) {
InterruptDisabler disabler;
s_tasks->prepend(task);
system.nprocess++;
#ifdef TASK_DEBUG
kprintf("Kernel task %u (%s) spawned @ %p\n", task->pid(), task->name().characters(), task->m_tss.eip);
#endif
}
return task;
}
Task::Task(String&& name, uid_t uid, gid_t gid, pid_t parentPID, RingLevel ring)
: m_name(move(name))
, m_pid(next_pid++)
, m_uid(uid)
, m_gid(gid)
, m_state(Runnable)
, m_ring(ring)
, m_parentPID(parentPID)
{
m_fileHandles.append(nullptr); // stdin
m_fileHandles.append(nullptr); // stdout
m_fileHandles.append(nullptr); // stderr
auto* parentTask = Task::fromPID(parentPID);
if (parentTask)
m_cwd = parentTask->m_cwd.copyRef();
else
m_cwd = nullptr;
m_nextRegion = LinearAddress(0x600000);
memset(&m_tss, 0, sizeof(m_tss));
if (isRing3()) {
memset(&m_ldtEntries, 0, sizeof(m_ldtEntries));
allocateLDT();
}
// Only IF is set when a task boots.
m_tss.eflags = 0x0202;
word cs, ds, ss;
if (isRing0()) {
cs = 0x08;
ds = 0x10;
ss = 0x10;
} else {
cs = 0x1b;
ds = 0x23;
ss = 0x23;
}
m_tss.ds = ds;
m_tss.es = ds;
m_tss.fs = ds;
m_tss.gs = ds;
m_tss.ss = ss;
m_tss.cs = cs;
m_tss.cr3 = MM.pageDirectoryBase().get();
2018-10-18 12:53:00 +00:00
if (isRing0()) {
// FIXME: This memory is leaked.
// But uh, there's also no kernel task termination, so I guess it's not technically leaked...
dword stackBottom = (dword)kmalloc(defaultStackSize);
m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8;
m_tss.esp = m_stackTop0;
2018-10-18 12:53:00 +00:00
} else {
auto* region = allocateRegion(defaultStackSize, "stack");
ASSERT(region);
m_stackTop3 = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
m_tss.esp = m_stackTop3;
2018-10-18 12:53:00 +00:00
}
if (isRing3()) {
// Ring3 tasks need a separate stack for Ring0.
2018-10-18 12:53:00 +00:00
m_kernelStack = kmalloc(defaultStackSize);
m_stackTop0 = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_stackTop0;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_pid;
m_farPtr.offset = 0x98765432;
ProcFileSystem::the().addProcess(*this);
}
Task::~Task()
{
InterruptDisabler disabler;
ProcFileSystem::the().removeProcess(*this);
system.nprocess--;
delete [] m_ldtEntries;
m_ldtEntries = nullptr;
2018-10-18 12:53:00 +00:00
if (m_kernelStack) {
kfree(m_kernelStack);
m_kernelStack = nullptr;
}
}
void Task::dumpRegions()
{
kprintf("Task %s(%u) regions:\n", name().characters(), pid());
kprintf("BEGIN END SIZE NAME\n");
for (auto& region : m_regions) {
kprintf("%x -- %x %x %s\n",
region->linearAddress.get(),
region->linearAddress.offset(region->size - 1).get(),
region->size,
region->name.characters());
}
kprintf("Task %s(%u) subregions:\n", name().characters(), pid());
kprintf("REGION OFFSET BEGIN END SIZE NAME\n");
for (auto& subregion : m_subregions) {
kprintf("%x %x %x -- %x %x %s\n",
subregion->region->linearAddress.get(),
subregion->offset,
subregion->linearAddress.get(),
subregion->linearAddress.offset(subregion->size - 1).get(),
subregion->size,
subregion->name.characters());
}
}
void Task::sys$exit(int status)
{
cli();
#ifdef TASK_DEBUG
kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
#endif
setState(Exiting);
MM.unmapRegionsForTask(*this);
s_tasks->remove(this);
for (auto* task = s_tasks->head(); task; task = task->next()) {
if (task->waitee() == m_pid)
task->m_waiteeStatus = status << 8;
}
if (!scheduleNewTask()) {
kprintf("Task::sys$exit: Failed to schedule a new task :(\n");
HANG;
}
s_deadTasks->append(this);
switchNow();
}
void Task::taskDidCrash(Task* crashedTask)
{
2018-10-25 08:33:10 +00:00
ASSERT_INTERRUPTS_DISABLED();
crashedTask->setState(Crashing);
crashedTask->dumpRegions();
2018-10-18 12:53:00 +00:00
s_tasks->remove(crashedTask);
MM.unmapRegionsForTask(*crashedTask);
if (!scheduleNewTask()) {
kprintf("Task::taskDidCrash: Failed to schedule a new task :(\n");
HANG;
}
s_deadTasks->append(crashedTask);
switchNow();
}
void Task::doHouseKeeping()
{
InterruptDisabler disabler;
if (s_deadTasks->isEmpty())
return;
Task* next = nullptr;
for (auto* deadTask = s_deadTasks->head(); deadTask; deadTask = next) {
next = deadTask->next();
delete deadTask;
}
s_deadTasks->clear();
}
void yield()
{
if (!current) {
kprintf( "PANIC: yield() with !current" );
HANG;
}
//kprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
InterruptDisabler disabler;
if (!scheduleNewTask())
return;
//kprintf("yield() jumping to new task: %x (%s)\n", current->farPtr().selector, current->name().characters());
switchNow();
}
void switchNow()
{
Descriptor& descriptor = getGDTEntry(current->selector());
descriptor.type = 9;
flushGDT();
asm("sti\n"
"ljmp *(%%eax)\n"
::"a"(&current->farPtr())
);
}
bool scheduleNewTask()
{
2018-10-25 08:33:10 +00:00
ASSERT_INTERRUPTS_DISABLED();
if (!current) {
// XXX: The first ever context_switch() goes to the idle task.
// This to setup a reliable place we can return to.
return contextSwitch(Task::kernelTask());
}
// Check and unblock tasks whose wait conditions have been met.
for (auto* task = s_tasks->head(); task; task = task->next()) {
if (task->state() == Task::BlockedSleep) {
if (task->wakeupTime() <= system.uptime) {
task->unblock();
continue;
}
}
if (task->state() == Task::BlockedWait) {
if (!Task::fromPID(task->waitee())) {
task->unblock();
continue;
}
}
if (task->state() == Task::BlockedRead) {
ASSERT(task->m_fdBlockedOnRead != -1);
if (task->m_fileHandles[task->m_fdBlockedOnRead]->hasDataAvailableForRead()) {
task->unblock();
continue;
}
}
}
#if 0
kprintf("Scheduler choices:\n");
for (auto* task = s_tasks->head(); task; task = task->next()) {
if (task->state() == Task::BlockedWait || task->state() == Task::BlockedSleep)
continue;
kprintf("%w %s(%u)\n", task->state(), task->name().characters(), task->pid());
}
#endif
auto* prevHead = s_tasks->head();
for (;;) {
// Move head to tail.
s_tasks->append(s_tasks->removeHead());
auto* task = s_tasks->head();
if (task->state() == Task::Runnable || task->state() == Task::Running) {
//kprintf("switch to %s (%p vs %p)\n", task->name().characters(), task, current);
return contextSwitch(task);
}
if (task == prevHead) {
// Back at task_head, nothing wants to run.
kprintf("Nothing wants to run!\n");
kprintf("PID OWNER STATE NSCHED NAME\n");
for (auto* task = s_tasks->head(); task; task = task->next()) {
kprintf("%w %w:%w %b %w %s\n",
task->pid(),
task->uid(),
task->gid(),
task->state(),
task->timesScheduled(),
task->name().characters());
}
kprintf("Switch to kernel task\n");
return contextSwitch(Task::kernelTask());
}
}
}
static bool contextSwitch(Task* t)
{
//kprintf("c_s to %s (same:%u)\n", t->name().characters(), current == t);
t->setTicksLeft(5);
t->didSchedule();
if (current == t)
return false;
// Some sanity checking to force a crash earlier.
auto csRPL = t->tss().cs & 3;
auto ssRPL = t->tss().ss & 3;
if (csRPL != ssRPL) {
kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n",
current->name().characters(), current->pid(),
t->name().characters(), t->pid()
);
kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip);
kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp);
ASSERT(csRPL == ssRPL);
}
2018-10-21 19:57:43 +00:00
if (current) {
// If the last task hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current->state() == Task::Running)
current->setState(Task::Runnable);
bool success = MM.unmapRegionsForTask(*current);
2018-10-21 19:57:43 +00:00
ASSERT(success);
}
bool success = MM.mapRegionsForTask(*t);
ASSERT(success);
current = t;
t->setState(Task::Running);
if (!t->selector())
t->setSelector(allocateGDTEntry());
auto& tssDescriptor = getGDTEntry(t->selector());
tssDescriptor.limit_hi = 0;
tssDescriptor.limit_lo = 0xFFFF;
tssDescriptor.base_lo = (DWORD)(&t->tss()) & 0xFFFF;
tssDescriptor.base_hi = ((DWORD)(&t->tss()) >> 16) & 0xFF;
tssDescriptor.base_hi2 = ((DWORD)(&t->tss()) >> 24) & 0xFF;
tssDescriptor.dpl = 0;
tssDescriptor.segment_present = 1;
tssDescriptor.granularity = 1;
tssDescriptor.zero = 0;
tssDescriptor.operation_size = 1;
tssDescriptor.descriptor_type = 0;
tssDescriptor.type = 11; // Busy TSS
flushGDT();
return true;
}
Task* Task::fromPID(pid_t pid)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* task = s_tasks->head(); task; task = task->next()) {
if (task->pid() == pid)
return task;
}
return nullptr;
}
FileHandle* Task::fileHandleIfExists(int fd)
{
if (fd < 0)
return nullptr;
if ((unsigned)fd < m_fileHandles.size())
2018-10-18 08:28:09 +00:00
return m_fileHandles[fd].ptr();
return nullptr;
}
ssize_t Task::sys$get_dir_entries(int fd, void* buffer, size_t size)
{
VALIDATE_USER_BUFFER(buffer, size);
auto* handle = fileHandleIfExists(fd);
if (!handle)
return -1;
return handle->get_dir_entries((byte*)buffer, size);
}
int Task::sys$seek(int fd, int offset)
{
2018-10-18 08:28:09 +00:00
auto* handle = fileHandleIfExists(fd);
if (!handle)
return -1;
2018-10-18 08:28:09 +00:00
return handle->seek(offset, SEEK_SET);
}
2018-10-18 08:28:09 +00:00
ssize_t Task::sys$read(int fd, void* outbuf, size_t nread)
{
VALIDATE_USER_BUFFER(outbuf, nread);
#ifdef DEBUG_IO
kprintf("Task::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread);
#endif
2018-10-18 08:28:09 +00:00
auto* handle = fileHandleIfExists(fd);
#ifdef DEBUG_IO
kprintf("Task::sys$read: handle=%p\n", handle);
#endif
if (!handle) {
kprintf("Task::sys$read: handle not found :(\n");
return -1;
}
#ifdef DEBUG_IO
kprintf("call read on handle=%p\n", handle);
#endif
if (handle->isBlocking()) {
if (!handle->hasDataAvailableForRead()) {
m_fdBlockedOnRead = fd;
block(BlockedRead);
yield();
}
}
2018-10-18 08:28:09 +00:00
nread = handle->read((byte*)outbuf, nread);
#ifdef DEBUG_IO
kprintf("Task::sys$read: nread=%u\n", nread);
#endif
return nread;
}
int Task::sys$close(int fd)
{
2018-10-18 08:28:09 +00:00
auto* handle = fileHandleIfExists(fd);
if (!handle)
return -1;
2018-10-18 08:28:09 +00:00
// FIXME: Implement.
return 0;
}
2018-10-26 22:29:31 +00:00
int Task::sys$lstat(const char* path, Unix::stat* statbuf)
{
2018-10-26 22:29:31 +00:00
VALIDATE_USER_BUFFER(statbuf, sizeof(Unix::stat));
auto handle = VirtualFileSystem::the().open(move(path), m_cwd.ptr());
if (!handle)
return -1;
2018-10-26 22:29:31 +00:00
handle->stat(statbuf);
return 0;
}
int Task::sys$chdir(const char* path)
{
VALIDATE_USER_BUFFER(path, strlen(path));
auto handle = VirtualFileSystem::the().open(path, m_cwd.ptr());
if (!handle)
return -ENOENT; // FIXME: More detailed error.
if (!handle->isDirectory())
return -ENOTDIR;
m_cwd = handle->vnode();
return 0;
}
int Task::sys$getcwd(char* buffer, size_t size)
{
// FIXME: Implement!
VALIDATE_USER_BUFFER(buffer, size);
return -ENOTIMPL;
}
int Task::sys$open(const char* path, size_t pathLength)
{
#ifdef DEBUG_IO
kprintf("Task::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength);
#endif
VALIDATE_USER_BUFFER(path, pathLength);
if (m_fileHandles.size() >= m_maxFileHandles)
return -EMFILE;
auto handle = VirtualFileSystem::the().open(String(path, pathLength), m_cwd.ptr());
if (!handle)
return -ENOENT; // FIXME: Detailed error.
int fd = m_fileHandles.size();
handle->setFD(fd);
m_fileHandles.append(move(handle));
return fd;
}
int Task::sys$uname(utsname* buf)
{
VALIDATE_USER_BUFFER(buf, sizeof(utsname));
strcpy(buf->sysname, "Serenity");
strcpy(buf->release, "1.0-dev");
strcpy(buf->version, "FIXME");
strcpy(buf->machine, "i386");
strcpy(buf->nodename, getHostname().characters());
return 0;
}
int Task::sys$kill(pid_t pid, int sig)
{
(void) sig;
if (pid == 0) {
// FIXME: Send to same-group processes.
ASSERT(pid != 0);
}
if (pid == -1) {
// FIXME: Send to all processes.
ASSERT(pid != -1);
}
ASSERT_NOT_REACHED();
Task* peer = Task::fromPID(pid);
if (!peer) {
// errno = ESRCH;
return -1;
}
return -1;
}
int Task::sys$sleep(unsigned seconds)
{
if (!seconds)
return 0;
sleep(seconds * TICKS_PER_SECOND);
return 0;
}
int Task::sys$gettimeofday(timeval* tv)
{
VALIDATE_USER_BUFFER(tv, sizeof(tv));
InterruptDisabler disabler;
auto now = RTC::now();
tv->tv_sec = now;
tv->tv_usec = 0;
return 0;
}
uid_t Task::sys$getuid()
{
return m_uid;
}
gid_t Task::sys$getgid()
{
return m_gid;
}
pid_t Task::sys$getpid()
{
return m_pid;
}
pid_t Task::sys$waitpid(pid_t waitee, int* wstatus, int options)
{
if (wstatus)
VALIDATE_USER_BUFFER(wstatus, sizeof(int));
2018-10-25 08:33:10 +00:00
InterruptDisabler disabler;
if (!Task::fromPID(waitee))
return -1;
m_waitee = waitee;
m_waiteeStatus = 0;
block(BlockedWait);
yield();
if (wstatus)
*wstatus = m_waiteeStatus;
return m_waitee;
}
void Task::unblock()
{
ASSERT(m_state != Task::Runnable && m_state != Task::Running);
system.nblocked--;
m_state = Task::Runnable;
}
void Task::block(Task::State state)
{
ASSERT(current->state() == Task::Running);
system.nblocked++;
current->setState(state);
}
void block(Task::State state)
{
current->block(state);
yield();
}
void sleep(DWORD ticks)
{
ASSERT(current->state() == Task::Running);
current->setWakeupTime(system.uptime + ticks);
current->block(Task::BlockedSleep);
yield();
}
Task* Task::kernelTask()
{
ASSERT(s_kernelTask);
return s_kernelTask;
}
2018-10-18 12:53:00 +00:00
Task::Region::Region(LinearAddress a, size_t s, RetainPtr<Zone>&& z, String&& n)
: linearAddress(a)
, size(s)
, zone(move(z))
, name(move(n))
{
}
Task::Region::~Region()
{
}
Task::Subregion::Subregion(Region& r, dword o, size_t s, LinearAddress l, String&& n)\
: region(r)
, offset(o)
, size(s)
, linearAddress(l)
, name(move(n))
{
}
Task::Subregion::~Subregion()
{
}
bool Task::isValidAddressForKernel(LinearAddress laddr) const
{
InterruptDisabler disabler;
if (laddr.get() >= ksyms().first().address && laddr.get() <= ksyms().last().address)
return true;
if (is_kmalloc_address((void*)laddr.get()))
return true;
return isValidAddressForUser(laddr);
}
bool Task::isValidAddressForUser(LinearAddress laddr) const
{
InterruptDisabler disabler;
for (auto& region: m_regions) {
if (laddr >= region->linearAddress && laddr < region->linearAddress.offset(region->size))
return true;
}
for (auto& subregion: m_subregions) {
if (laddr >= subregion->linearAddress && laddr < subregion->linearAddress.offset(subregion->size))
return true;
}
return false;
}