ladybird/Kernel/Process.cpp

1496 lines
42 KiB
C++
Raw Normal View History

#include "types.h"
#include "Process.h"
#include "kmalloc.h"
#include "VGA.h"
#include "StdLib.h"
#include "i386.h"
#include "system.h"
2018-11-07 10:37:54 +00:00
#include <VirtualFileSystem/FileDescriptor.h>
2018-10-18 08:28:09 +00:00
#include <VirtualFileSystem/VirtualFileSystem.h>
2018-11-04 12:52:53 +00:00
#include <ELFLoader/ELFLoader.h>
#include "MemoryManager.h"
#include "errno.h"
#include "i8253.h"
#include "RTC.h"
#include "ProcFileSystem.h"
#include <AK/StdLib.h>
#include <LibC/signal_numbers.h>
#include "Syscall.h"
#include "Scheduler.h"
//#define DEBUG_IO
//#define TASK_DEBUG
//#define FORK_DEBUG
#define MAX_PROCESS_GIDS 32
// FIXME: Only do a single validation for accesses that don't span multiple pages.
// FIXME: Some places pass strlen(arg1) as arg2. This doesn't seem entirely perfect..
#define VALIDATE_USER_READ(b, s) \
do { \
LinearAddress laddr((dword)(b)); \
if (!validate_user_read(laddr) || !validate_user_read(laddr.offset((s) - 1))) \
return -EFAULT; \
} while(0)
#define VALIDATE_USER_WRITE(b, s) \
do { \
LinearAddress laddr((dword)(b)); \
if (!validate_user_write(laddr) || !validate_user_write(laddr.offset((s) - 1))) \
return -EFAULT; \
} while(0)
static const DWORD defaultStackSize = 16384;
static pid_t next_pid;
InlineLinkedList<Process>* g_processes;
InlineLinkedList<Process>* g_dead_processes;
2018-10-26 07:54:29 +00:00
static String* s_hostname;
static String& hostnameStorage(InterruptDisabler&)
2018-10-26 07:54:29 +00:00
{
ASSERT(s_hostname);
return *s_hostname;
}
static String getHostname()
{
InterruptDisabler disabler;
return hostnameStorage(disabler).isolatedCopy();
}
CoolGlobals* g_cool_globals;
void Process::initialize()
{
#ifdef COOL_GLOBALS
g_cool_globals = reinterpret_cast<CoolGlobals*>(0x1000);
#endif
next_pid = 0;
g_processes = new InlineLinkedList<Process>;
g_dead_processes = new InlineLinkedList<Process>;
2018-10-26 07:54:29 +00:00
s_hostname = new String("birx");
Scheduler::initialize();
}
Vector<Process*> Process::allProcesses()
{
2018-10-25 08:33:10 +00:00
InterruptDisabler disabler;
Vector<Process*> processes;
processes.ensureCapacity(g_processes->sizeSlow());
for (auto* process = g_processes->head(); process; process = process->next())
processes.append(process);
return processes;
}
Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable)
{
2018-10-18 12:53:00 +00:00
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_nextRegion;
m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
2018-10-18 12:53:00 +00:00
unsigned page_count = ceilDiv(size, PAGE_SIZE);
auto physical_pages = MM.allocate_physical_pages(page_count);
ASSERT(physical_pages.size() == page_count);
m_regions.append(adopt(*new Region(laddr, size, move(physical_pages), move(name), is_readable, is_writable)));
MM.mapRegion(*this, *m_regions.last());
2018-10-18 12:53:00 +00:00
return m_regions.last().ptr();
}
bool Process::deallocate_region(Region& region)
{
InterruptDisabler disabler;
for (size_t i = 0; i < m_regions.size(); ++i) {
if (m_regions[i].ptr() == &region) {
MM.unmapRegion(*this, region);
m_regions.remove(i);
return true;
}
}
return false;
}
Region* Process::regionFromRange(LinearAddress laddr, size_t size)
{
for (auto& region : m_regions) {
if (region->linearAddress == laddr && region->size == size)
return region.ptr();
}
return nullptr;
}
int Process::sys$set_mmap_name(void* addr, size_t size, const char* name)
{
VALIDATE_USER_READ(name, strlen(name));
auto* region = regionFromRange(LinearAddress((dword)addr), size);
if (!region)
return -EINVAL;
region->name = name;
return 0;
}
void* Process::sys$mmap(void* addr, size_t size)
{
InterruptDisabler disabler;
// FIXME: Implement mapping at a client-preferred address.
ASSERT(addr == nullptr);
auto* region = allocate_region(LinearAddress(), size, "mmap");
if (!region)
return (void*)-1;
MM.mapRegion(*this, *region);
return (void*)region->linearAddress.get();
}
int Process::sys$munmap(void* addr, size_t size)
{
InterruptDisabler disabler;
auto* region = regionFromRange(LinearAddress((dword)addr), size);
if (!region)
return -1;
if (!deallocate_region(*region))
return -1;
return 0;
}
int Process::sys$gethostname(char* buffer, size_t size)
2018-10-26 07:54:29 +00:00
{
VALIDATE_USER_WRITE(buffer, size);
auto hostname = getHostname();
if (size < (hostname.length() + 1))
2018-10-26 07:54:29 +00:00
return -ENAMETOOLONG;
memcpy(buffer, hostname.characters(), size);
return 0;
2018-10-26 07:54:29 +00:00
}
Process* Process::fork(RegisterDump& regs)
{
auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copyRef(), m_executable.copyRef(), m_tty, this);
#ifdef FORK_DEBUG
dbgprintf("fork: child=%p\n", child);
#endif
#if 0
// FIXME: An honest fork() would copy these. Needs a Vector copy ctor.
child->m_arguments = m_arguments;
child->m_initialEnvironment = m_initialEnvironment;
#endif
for (auto& region : m_regions) {
#ifdef FORK_DEBUG
dbgprintf("fork: cloning Region{%p}\n", region.ptr());
#endif
auto cloned_region = region->clone();
child->m_regions.append(move(cloned_region));
MM.mapRegion(*child, *child->m_regions.last());
}
child->m_tss.eax = 0; // fork() returns 0 in the child :^)
child->m_tss.ebx = regs.ebx;
child->m_tss.ecx = regs.ecx;
child->m_tss.edx = regs.edx;
child->m_tss.ebp = regs.ebp;
child->m_tss.esp = regs.esp_if_crossRing;
child->m_tss.esi = regs.esi;
child->m_tss.edi = regs.edi;
child->m_tss.eflags = regs.eflags;
child->m_tss.eip = regs.eip;
child->m_tss.cs = regs.cs;
child->m_tss.ds = regs.ds;
child->m_tss.es = regs.es;
child->m_tss.fs = regs.fs;
child->m_tss.gs = regs.gs;
child->m_tss.ss = regs.ss_if_crossRing;
#ifdef FORK_DEBUG
dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp);
#endif
ProcFileSystem::the().addProcess(*child);
g_processes->prepend(child);
system.nprocess++;
#ifdef TASK_DEBUG
kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip);
#endif
return child;
}
pid_t Process::sys$fork(RegisterDump& regs)
{
auto* child = fork(regs);
ASSERT(child);
return child->pid();
}
int Process::exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
{
auto parts = path.split('/');
if (parts.isEmpty())
return -ENOENT;
int error;
2018-11-07 10:37:54 +00:00
auto descriptor = VirtualFileSystem::the().open(path, error, 0, m_cwd ? m_cwd->inode : InodeIdentifier());
if (!descriptor) {
ASSERT(error != 0);
return error;
}
2018-11-07 10:37:54 +00:00
if (!descriptor->metadata().mayExecute(m_euid, m_gids))
return -EACCES;
2018-11-07 10:37:54 +00:00
auto elfData = descriptor->readEntireFile();
if (!elfData)
return -EIO; // FIXME: Get a more detailed error from VFS.
dword entry_eip = 0;
PageDirectory* old_page_directory;
PageDirectory* new_page_directory;
{
InterruptDisabler disabler;
// Okay, here comes the sleight of hand, pay close attention..
auto old_regions = move(m_regions);
old_page_directory = m_page_directory;
new_page_directory = reinterpret_cast<PageDirectory*>(kmalloc_page_aligned(sizeof(PageDirectory)));
MM.populate_page_directory(*new_page_directory);
m_page_directory = new_page_directory;
MM.enter_process_paging_scope(*this);
2018-11-04 12:52:53 +00:00
ELFLoader loader(move(elfData));
loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
ASSERT(size);
size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
2018-11-04 12:52:53 +00:00
(void) allocate_region(laddr, size, String(name), is_readable, is_writable);
return laddr.asPtr();
};
2018-11-04 12:52:53 +00:00
bool success = loader.load();
if (!success) {
m_page_directory = old_page_directory;
MM.enter_process_paging_scope(*this);
MM.release_page_directory(*new_page_directory);
m_regions = move(old_regions);
kprintf("sys$execve: Failure loading %s\n", path.characters());
return -ENOEXEC;
}
2018-11-04 12:52:53 +00:00
entry_eip = (dword)loader.symbol_ptr("_start");
if (!entry_eip) {
m_page_directory = old_page_directory;
MM.enter_process_paging_scope(*this);
MM.release_page_directory(*new_page_directory);
m_regions = move(old_regions);
return -ENOEXEC;
}
}
InterruptDisabler disabler;
if (current == this)
Scheduler::prepare_to_modify_own_tss();
m_name = parts.takeLast();
dword old_esp0 = m_tss.esp0;
memset(&m_tss, 0, sizeof(m_tss));
m_tss.eflags = 0x0202;
m_tss.eip = entry_eip;
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.ss = 0x23;
m_tss.cr3 = (dword)m_page_directory;
m_stack_region = allocate_region(LinearAddress(), defaultStackSize, "stack");
ASSERT(m_stack_region);
m_stackTop3 = m_stack_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
m_tss.esp = m_stackTop3;
m_tss.ss0 = 0x10;
m_tss.esp0 = old_esp0;
m_tss.ss2 = m_pid;
MM.release_page_directory(*old_page_directory);
2018-11-07 10:37:54 +00:00
m_executable = descriptor->vnode();
m_arguments = move(arguments);
m_initialEnvironment = move(environment);
#ifdef TASK_DEBUG
kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), m_tss.eip);
#endif
set_state(ExecPhase1);
if (current == this) {
bool success = Scheduler::yield();
ASSERT(success);
}
return 0;
}
int Process::sys$execve(const char* filename, const char** argv, const char** envp)
{
VALIDATE_USER_READ(filename, strlen(filename));
if (argv) {
for (size_t i = 0; argv[i]; ++i) {
VALIDATE_USER_READ(argv[i], strlen(argv[i]));
}
}
if (envp) {
for (size_t i = 0; envp[i]; ++i) {
VALIDATE_USER_READ(envp[i], strlen(envp[i]));
}
}
String path(filename);
auto parts = path.split('/');
Vector<String> arguments;
if (argv) {
for (size_t i = 0; argv[i]; ++i) {
arguments.append(argv[i]);
}
} else {
arguments.append(parts.last());
}
Vector<String> environment;
if (envp) {
for (size_t i = 0; envp[i]; ++i) {
environment.append(envp[i]);
}
}
int rc = exec(path, move(arguments), move(environment));
ASSERT(rc < 0); // We should never continue after a successful exec!
return rc;
}
pid_t Process::sys$spawn(const char* filename, const char** argv, const char** envp)
{
VALIDATE_USER_READ(filename, strlen(filename));
if (argv) {
for (size_t i = 0; argv[i]; ++i) {
VALIDATE_USER_READ(argv[i], strlen(argv[i]));
}
}
if (envp) {
for (size_t i = 0; envp[i]; ++i) {
VALIDATE_USER_READ(envp[i], strlen(envp[i]));
}
}
String path(filename);
auto parts = path.split('/');
Vector<String> arguments;
if (argv) {
for (size_t i = 0; argv[i]; ++i) {
arguments.append(argv[i]);
}
} else {
arguments.append(parts.last());
}
Vector<String> environment;
if (envp) {
for (size_t i = 0; envp[i]; ++i) {
environment.append(envp[i]);
}
}
int error;
auto* child = create_user_process(path, m_uid, m_gid, m_pid, error, move(arguments), move(environment), m_tty);
if (child)
return child->pid();
return error;
}
Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
{
// FIXME: Don't split() the path twice (sys$spawn also does it...)
auto parts = path.split('/');
if (arguments.isEmpty()) {
arguments.append(parts.last());
}
RetainPtr<VirtualFileSystem::Node> cwd;
{
InterruptDisabler disabler;
2018-11-07 20:38:18 +00:00
if (auto* parent = Process::from_pid(parent_pid))
cwd = parent->m_cwd.copyRef();
}
if (!cwd)
cwd = VirtualFileSystem::the().root();
auto* process = new Process(parts.takeLast(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty);
error = process->exec(path, move(arguments), move(environment));
if (error != 0)
return nullptr;
ProcFileSystem::the().addProcess(*process);
g_processes->prepend(process);
system.nprocess++;
#ifdef TASK_DEBUG
kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
#endif
error = 0;
return process;
}
int Process::sys$get_environment(char*** environ)
{
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "environ");
if (!region)
return -ENOMEM;
MM.mapRegion(*this, *region);
char* envpage = (char*)region->linearAddress.get();
*environ = (char**)envpage;
char* bufptr = envpage + (sizeof(char*) * (m_initialEnvironment.size() + 1));
for (size_t i = 0; i < m_initialEnvironment.size(); ++i) {
(*environ)[i] = bufptr;
memcpy(bufptr, m_initialEnvironment[i].characters(), m_initialEnvironment[i].length());
bufptr += m_initialEnvironment[i].length();
*(bufptr++) = '\0';
}
(*environ)[m_initialEnvironment.size()] = nullptr;
return 0;
}
int Process::sys$get_arguments(int* argc, char*** argv)
{
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "argv");
if (!region)
return -ENOMEM;
MM.mapRegion(*this, *region);
char* argpage = (char*)region->linearAddress.get();
*argc = m_arguments.size();
*argv = (char**)argpage;
char* bufptr = argpage + (sizeof(char*) * m_arguments.size());
for (size_t i = 0; i < m_arguments.size(); ++i) {
(*argv)[i] = bufptr;
memcpy(bufptr, m_arguments[i].characters(), m_arguments[i].length());
bufptr += m_arguments[i].length();
*(bufptr++) = '\0';
}
return 0;
}
2018-11-07 20:38:18 +00:00
Process* Process::create_kernel_process(void (*e)(), String&& name)
{
auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
process->m_tss.eip = (dword)e;
if (process->pid() != 0) {
InterruptDisabler disabler;
g_processes->prepend(process);
system.nprocess++;
ProcFileSystem::the().addProcess(*process);
#ifdef TASK_DEBUG
kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
#endif
}
return process;
}
2018-11-06 12:33:06 +00:00
Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr<VirtualFileSystem::Node>&& cwd, RetainPtr<VirtualFileSystem::Node>&& executable, TTY* tty, Process* fork_parent)
: m_name(move(name))
, m_pid(next_pid++) // FIXME: RACE: This variable looks racy!
, m_uid(uid)
, m_gid(gid)
, m_euid(uid)
, m_egid(gid)
, m_state(Runnable)
, m_ring(ring)
, m_cwd(move(cwd))
, m_executable(move(executable))
, m_tty(tty)
2018-11-06 12:33:06 +00:00
, m_ppid(ppid)
{
m_gids.set(m_gid);
if (fork_parent) {
m_sid = fork_parent->m_sid;
m_pgid = fork_parent->m_pgid;
} else {
// FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though..
InterruptDisabler disabler;
2018-11-07 20:38:18 +00:00
if (auto* parent = Process::from_pid(m_ppid)) {
m_sid = parent->m_sid;
m_pgid = parent->m_pgid;
}
}
m_page_directory = (PageDirectory*)kmalloc_page_aligned(sizeof(PageDirectory));
MM.populate_page_directory(*m_page_directory);
if (fork_parent) {
m_file_descriptors.resize(fork_parent->m_file_descriptors.size());
for (size_t i = 0; i < fork_parent->m_file_descriptors.size(); ++i) {
if (!fork_parent->m_file_descriptors[i])
continue;
#ifdef FORK_DEBUG
dbgprintf("fork: cloning fd %u... (%p) istty? %um\n", i, fork_parent->m_file_descriptors[i].ptr(), fork_parent->m_file_descriptors[i]->isTTY());
#endif
m_file_descriptors[i] = fork_parent->m_file_descriptors[i]->clone();
}
} else {
m_file_descriptors.resize(m_max_open_file_descriptors);
if (tty) {
m_file_descriptors[0] = tty->open(O_RDONLY);
m_file_descriptors[1] = tty->open(O_WRONLY);
m_file_descriptors[2] = tty->open(O_WRONLY);
}
}
if (fork_parent)
m_nextRegion = fork_parent->m_nextRegion;
else
m_nextRegion = LinearAddress(0x10000000);
if (fork_parent) {
memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss));
} else {
memset(&m_tss, 0, sizeof(m_tss));
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
word cs, ds, ss;
if (isRing0()) {
cs = 0x08;
ds = 0x10;
ss = 0x10;
} else {
cs = 0x1b;
ds = 0x23;
ss = 0x23;
}
m_tss.ds = ds;
m_tss.es = ds;
m_tss.fs = ds;
m_tss.gs = ds;
m_tss.ss = ss;
m_tss.cs = cs;
}
m_tss.cr3 = (dword)m_page_directory;
2018-10-18 12:53:00 +00:00
if (isRing0()) {
// FIXME: This memory is leaked.
// But uh, there's also no kernel process termination, so I guess it's not technically leaked...
dword stackBottom = (dword)kmalloc_eternal(defaultStackSize);
m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8;
m_tss.esp = m_stackTop0;
2018-10-18 12:53:00 +00:00
} else {
if (fork_parent) {
m_stackTop3 = fork_parent->m_stackTop3;
} else {
auto* region = allocate_region(LinearAddress(), defaultStackSize, "stack");
ASSERT(region);
m_stackTop3 = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
m_tss.esp = m_stackTop3;
}
2018-10-18 12:53:00 +00:00
}
if (isRing3()) {
// Ring3 processes need a separate stack for Ring0.
2018-10-18 12:53:00 +00:00
m_kernelStack = kmalloc(defaultStackSize);
m_stackTop0 = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_stackTop0;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_pid;
m_farPtr.offset = 0x98765432;
}
Process::~Process()
{
InterruptDisabler disabler;
ProcFileSystem::the().removeProcess(*this);
system.nprocess--;
gdt_free_entry(selector());
2018-10-18 12:53:00 +00:00
if (m_kernelStack) {
kfree(m_kernelStack);
m_kernelStack = nullptr;
}
MM.release_page_directory(*m_page_directory);
2018-10-18 12:53:00 +00:00
}
void Process::dumpRegions()
2018-10-18 12:53:00 +00:00
{
kprintf("Process %s(%u) regions:\n", name().characters(), pid());
2018-10-18 12:53:00 +00:00
kprintf("BEGIN END SIZE NAME\n");
for (auto& region : m_regions) {
kprintf("%x -- %x %x %s\n",
region->linearAddress.get(),
region->linearAddress.offset(region->size - 1).get(),
region->size,
region->name.characters());
}
}
void Process::sys$exit(int status)
{
cli();
#ifdef TASK_DEBUG
kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
#endif
set_state(Dead);
m_termination_status = status;
m_termination_signal = 0;
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
void Process::terminate_due_to_signal(byte signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
m_termination_status = 0;
m_termination_signal = signal;
set_state(Dead);
}
void Process::send_signal(byte signal, Process* sender)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
m_pending_signals |= 1 << signal;
if (sender)
dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid());
else
dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, name().characters(), pid());
}
bool Process::has_unmasked_pending_signals() const
{
return m_pending_signals & ~m_signal_mask;
}
void Process::dispatch_one_pending_signal()
{
ASSERT_INTERRUPTS_DISABLED();
dword signal_candidates = m_pending_signals & ~m_signal_mask;
ASSERT(signal_candidates);
byte signal = 0;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << signal)) {
break;
}
}
dispatch_signal(signal);
}
void Process::dispatch_signal(byte signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
dbgprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
auto handler_laddr = action.handler_or_sigaction;
if (handler_laddr.is_null()) {
// FIXME: Is termination really always the appropriate action?
return terminate_due_to_signal(signal);
}
m_tss_to_resume_kernel = m_tss;
#ifdef SIGNAL_DEBUG
kprintf("resume tss pc: %w:%x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip);
#endif
word ret_cs = m_tss.cs;
dword ret_eip = m_tss.eip;
dword ret_eflags = m_tss.eflags;
bool interrupting_in_kernel = (ret_cs & 3) == 0;
if ((ret_cs & 3) == 0) {
// FIXME: Handle send_signal to process currently in kernel code.
dbgprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), toString(state()), ret_cs, ret_eip);
ASSERT(is_blocked());
}
ProcessPagingScope pagingScope(*this);
if (interrupting_in_kernel) {
if (!m_signal_stack_user_region) {
m_signal_stack_user_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (user)");
ASSERT(m_signal_stack_user_region);
m_signal_stack_kernel_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (kernel)");
ASSERT(m_signal_stack_user_region);
}
m_tss.ss = 0x23;
m_tss.esp = m_signal_stack_user_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_signal_stack_kernel_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
push_value_on_stack(ret_eflags);
push_value_on_stack(ret_cs);
push_value_on_stack(ret_eip);
} else {
push_value_on_stack(ret_cs);
push_value_on_stack(ret_eip);
push_value_on_stack(ret_eflags);
}
// PUSHA
dword old_esp = m_tss.esp;
push_value_on_stack(m_tss.eax);
push_value_on_stack(m_tss.ecx);
push_value_on_stack(m_tss.edx);
push_value_on_stack(m_tss.ebx);
push_value_on_stack(old_esp);
push_value_on_stack(m_tss.ebp);
push_value_on_stack(m_tss.esi);
push_value_on_stack(m_tss.edi);
m_tss.eax = (dword)signal;
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.eip = handler_laddr.get();
if (m_return_to_ring3_from_signal_trampoline.is_null()) {
// FIXME: This should be a global trampoline shared by all processes, not one created per process!
// FIXME: Remap as read-only after setup.
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true);
m_return_to_ring3_from_signal_trampoline = region->linearAddress;
byte* code_ptr = m_return_to_ring3_from_signal_trampoline.asPtr();
*code_ptr++ = 0x61; // popa
*code_ptr++ = 0x9d; // popf
*code_ptr++ = 0xc3; // ret
*code_ptr++ = 0x0f; // ud2
*code_ptr++ = 0x0b;
m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr);
*code_ptr++ = 0x61; // popa
*code_ptr++ = 0xb8; // mov eax, <dword>
*(dword*)code_ptr = Syscall::SC_sigreturn;
code_ptr += sizeof(dword);
*code_ptr++ = 0xcd; // int 0x80
*code_ptr++ = 0x80;
*code_ptr++ = 0x0f; // ud2
*code_ptr++ = 0x0b;
// FIXME: For !SA_NODEFER, maybe we could do something like emitting an int 0x80 syscall here that
// unmasks the signal so it can be received again? I guess then I would need one trampoline
// per signal number if it's hard-coded, but it's just a few bytes per each.
}
if (interrupting_in_kernel)
push_value_on_stack(m_return_to_ring0_from_signal_trampoline.get());
else
push_value_on_stack(m_return_to_ring3_from_signal_trampoline.get());
m_pending_signals &= ~(1 << signal);
#ifdef SIGNAL_DEBUG
dbgprintf("signal: Okay, %s(%u) has been primed\n", name().characters(), pid());
#endif
}
void Process::sys$sigreturn()
{
InterruptDisabler disabler;
Scheduler::prepare_to_modify_own_tss();
m_tss = m_tss_to_resume_kernel;
#ifdef SIGNAL_DEBUG
dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid());
dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip);
#endif
Scheduler::yield();
kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid());
ASSERT_NOT_REACHED();
}
void Process::push_value_on_stack(dword value)
{
m_tss.esp -= 4;
dword* stack_ptr = (dword*)m_tss.esp;
*stack_ptr = value;
}
void Process::crash()
{
2018-10-25 08:33:10 +00:00
ASSERT_INTERRUPTS_DISABLED();
ASSERT(state() != Dead);
m_termination_signal = SIGSEGV;
set_state(Dead);
dumpRegions();
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
void Process::doHouseKeeping()
{
if (g_dead_processes->isEmpty())
return;
InterruptDisabler disabler;
Process* next = nullptr;
for (auto* deadProcess = g_dead_processes->head(); deadProcess; deadProcess = next) {
next = deadProcess->next();
delete deadProcess;
}
g_dead_processes->clear();
}
2018-11-07 20:38:18 +00:00
void Process::for_each(Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
2018-11-07 20:38:18 +00:00
if (!callback(*process))
break;
process = next_process;
2018-11-07 20:38:18 +00:00
}
}
void Process::for_each_in_pgrp(pid_t pgid, Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
2018-11-07 20:38:18 +00:00
if (process->pgid() == pgid) {
if (!callback(*process))
break;
}
process = next_process;
}
}
2018-11-07 20:38:18 +00:00
void Process::for_each_in_state(State state, Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
2018-11-07 20:38:18 +00:00
if (process->state() == state)
callback(*process);
process = next_process;
}
}
2018-11-07 20:38:18 +00:00
void Process::for_each_not_in_state(State state, Function<bool(Process&)> callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
2018-11-07 20:38:18 +00:00
if (process->state() != state)
callback(*process);
process = next_process;
}
}
2018-11-07 20:38:18 +00:00
Process* Process::from_pid(pid_t pid)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process; process = process->next()) {
if (process->pid() == pid)
return process;
}
return nullptr;
}
2018-11-07 10:37:54 +00:00
FileDescriptor* Process::file_descriptor(int fd)
{
if (fd < 0)
return nullptr;
2018-11-07 10:37:54 +00:00
if ((size_t)fd < m_file_descriptors.size())
return m_file_descriptors[fd].ptr();
return nullptr;
}
const FileDescriptor* Process::file_descriptor(int fd) const
{
if (fd < 0)
return nullptr;
if ((size_t)fd < m_file_descriptors.size())
return m_file_descriptors[fd].ptr();
return nullptr;
}
ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size)
{
VALIDATE_USER_WRITE(buffer, size);
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
return descriptor->get_dir_entries((byte*)buffer, size);
}
int Process::sys$lseek(int fd, off_t offset, int whence)
{
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
return descriptor->seek(offset, whence);
}
int Process::sys$ttyname_r(int fd, char* buffer, size_t size)
{
VALIDATE_USER_WRITE(buffer, size);
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
if (!descriptor->isTTY())
return -ENOTTY;
2018-11-07 10:37:54 +00:00
auto ttyName = descriptor->tty()->ttyName();
if (size < ttyName.length() + 1)
return -ERANGE;
strcpy(buffer, ttyName.characters());
return 0;
}
ssize_t Process::sys$write(int fd, const void* data, size_t size)
{
VALIDATE_USER_READ(data, size);
#ifdef DEBUG_IO
kprintf("Process::sys$write: called(%d, %p, %u)\n", fd, data, size);
#endif
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
#ifdef DEBUG_IO
2018-11-07 10:37:54 +00:00
kprintf("Process::sys$write: handle=%p\n", descriptor);
#endif
2018-11-07 10:37:54 +00:00
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
auto nwritten = descriptor->write((const byte*)data, size);
#ifdef DEBUG_IO
kprintf("Process::sys$write: nwritten=%u\n", nwritten);
#endif
return nwritten;
}
ssize_t Process::sys$read(int fd, void* outbuf, size_t nread)
{
VALIDATE_USER_WRITE(outbuf, nread);
#ifdef DEBUG_IO
kprintf("Process::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread);
#endif
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
#ifdef DEBUG_IO
2018-11-07 10:37:54 +00:00
kprintf("Process::sys$read: handle=%p\n", descriptor);
#endif
2018-11-07 10:37:54 +00:00
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
if (descriptor->isBlocking()) {
if (!descriptor->hasDataAvailableForRead()) {
m_fdBlockedOnRead = fd;
block(BlockedRead);
2018-11-07 11:05:51 +00:00
sched_yield();
if (m_was_interrupted_while_blocked)
return -EINTR;
}
}
2018-11-07 10:37:54 +00:00
nread = descriptor->read((byte*)outbuf, nread);
#ifdef DEBUG_IO
kprintf("Process::sys$read: nread=%u\n", nread);
#endif
return nread;
}
int Process::sys$close(int fd)
{
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
int rc = descriptor->close();
m_file_descriptors[fd] = nullptr;
return rc;
}
int Process::sys$lstat(const char* path, Unix::stat* statbuf)
{
VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat));
int error;
2018-11-07 10:37:54 +00:00
auto descriptor = VirtualFileSystem::the().open(move(path), error, O_NOFOLLOW_NOERROR, cwdInode());
if (!descriptor)
return error;
2018-11-07 10:37:54 +00:00
descriptor->stat(statbuf);
return 0;
}
int Process::sys$stat(const char* path, Unix::stat* statbuf)
{
VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat));
int error;
2018-11-07 10:37:54 +00:00
auto descriptor = VirtualFileSystem::the().open(move(path), error, 0, cwdInode());
if (!descriptor)
return error;
2018-11-07 10:37:54 +00:00
descriptor->stat(statbuf);
return 0;
}
int Process::sys$readlink(const char* path, char* buffer, size_t size)
{
VALIDATE_USER_READ(path, strlen(path));
VALIDATE_USER_WRITE(buffer, size);
int error;
2018-11-07 10:37:54 +00:00
auto descriptor = VirtualFileSystem::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, cwdInode());
if (!descriptor)
return error;
2018-11-07 10:37:54 +00:00
if (!descriptor->metadata().isSymbolicLink())
return -EINVAL;
2018-11-07 10:37:54 +00:00
auto contents = descriptor->readEntireFile();
if (!contents)
return -EIO; // FIXME: Get a more detailed error from VFS.
memcpy(buffer, contents.pointer(), min(size, contents.size()));
if (contents.size() + 1 < size)
buffer[contents.size()] = '\0';
return 0;
}
int Process::sys$chdir(const char* path)
{
VALIDATE_USER_READ(path, strlen(path));
int error;
2018-11-07 10:37:54 +00:00
auto descriptor = VirtualFileSystem::the().open(path, error, 0, cwdInode());
if (!descriptor)
return error;
2018-11-07 10:37:54 +00:00
if (!descriptor->isDirectory())
return -ENOTDIR;
2018-11-07 10:37:54 +00:00
m_cwd = descriptor->vnode();
return 0;
}
int Process::sys$getcwd(char* buffer, size_t size)
{
VALIDATE_USER_WRITE(buffer, size);
auto path = VirtualFileSystem::the().absolutePath(cwdInode());
if (path.isNull())
return -EINVAL;
if (size < path.length() + 1)
return -ERANGE;
strcpy(buffer, path.characters());
return -ENOTIMPL;
}
size_t Process::number_of_open_file_descriptors() const
{
size_t count = 0;
2018-11-07 10:37:54 +00:00
for (auto& descriptor : m_file_descriptors) {
if (descriptor)
++count;
}
return count;
}
int Process::sys$open(const char* path, int options)
{
#ifdef DEBUG_IO
kprintf("Process::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength);
#endif
VALIDATE_USER_READ(path, strlen(path));
if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
return -EMFILE;
int error;
2018-11-07 10:37:54 +00:00
auto descriptor = VirtualFileSystem::the().open(path, error, options, cwdInode());
if (!descriptor)
return error;
2018-11-07 10:37:54 +00:00
if (options & O_DIRECTORY && !descriptor->isDirectory())
return -ENOTDIR; // FIXME: This should be handled by VFS::open.
int fd = 0;
for (; fd < m_max_open_file_descriptors; ++fd) {
if (!m_file_descriptors[fd])
break;
}
2018-11-07 10:37:54 +00:00
m_file_descriptors[fd] = move(descriptor);
return fd;
}
int Process::sys$uname(utsname* buf)
{
VALIDATE_USER_WRITE(buf, sizeof(utsname));
strcpy(buf->sysname, "Serenity");
strcpy(buf->release, "1.0-dev");
strcpy(buf->version, "FIXME");
strcpy(buf->machine, "i386");
strcpy(buf->nodename, getHostname().characters());
return 0;
}
int Process::sys$isatty(int fd)
{
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
if (!descriptor->isTTY())
return -ENOTTY;
return 1;
}
int Process::sys$kill(pid_t pid, int signal)
{
if (pid == 0) {
// FIXME: Send to same-group processes.
ASSERT(pid != 0);
}
if (pid == -1) {
// FIXME: Send to all processes.
ASSERT(pid != -1);
}
ASSERT(pid != current->pid()); // FIXME: Support this scenario.
InterruptDisabler disabler;
2018-11-07 20:38:18 +00:00
auto* peer = Process::from_pid(pid);
if (!peer)
return -ESRCH;
peer->send_signal(signal, this);
return 0;
}
int Process::sys$sleep(unsigned seconds)
{
if (!seconds)
return 0;
sleep(seconds * TICKS_PER_SECOND);
if (m_wakeupTime > system.uptime) {
ASSERT(m_was_interrupted_while_blocked);
dword ticks_left_until_original_wakeup_time = m_wakeupTime - system.uptime;
return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
}
return 0;
}
int Process::sys$gettimeofday(timeval* tv)
{
VALIDATE_USER_WRITE(tv, sizeof(tv));
InterruptDisabler disabler;
auto now = RTC::now();
tv->tv_sec = now;
tv->tv_usec = 0;
return 0;
}
uid_t Process::sys$getuid()
{
return m_uid;
}
gid_t Process::sys$getgid()
{
return m_gid;
}
uid_t Process::sys$geteuid()
{
return m_euid;
}
gid_t Process::sys$getegid()
{
return m_egid;
}
pid_t Process::sys$getpid()
{
return m_pid;
}
2018-11-06 12:33:06 +00:00
pid_t Process::sys$getppid()
{
return m_ppid;
}
2018-11-06 12:40:23 +00:00
mode_t Process::sys$umask(mode_t mask)
{
auto old_mask = m_umask;
m_umask = mask;
return old_mask;
}
pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options)
{
if (wstatus)
VALIDATE_USER_WRITE(wstatus, sizeof(int));
2018-10-25 08:33:10 +00:00
InterruptDisabler disabler;
2018-11-07 20:38:18 +00:00
if (!Process::from_pid(waitee))
return -1;
m_waitee = waitee;
m_waitee_status = 0;
block(BlockedWait);
2018-11-07 11:05:51 +00:00
sched_yield();
if (m_was_interrupted_while_blocked)
return -EINTR;
if (wstatus)
*wstatus = m_waitee_status;
return m_waitee;
}
void Process::unblock()
{
ASSERT(m_state != Process::Runnable && m_state != Process::Running);
system.nblocked--;
m_state = Process::Runnable;
}
void Process::block(Process::State state)
{
ASSERT(current->state() == Process::Running);
system.nblocked++;
m_was_interrupted_while_blocked = false;
set_state(state);
}
void block(Process::State state)
{
current->block(state);
2018-11-07 11:05:51 +00:00
sched_yield();
}
void sleep(DWORD ticks)
{
ASSERT(current->state() == Process::Running);
current->setWakeupTime(system.uptime + ticks);
current->block(Process::BlockedSleep);
2018-11-07 11:05:51 +00:00
sched_yield();
}
bool Process::isValidAddressForKernel(LinearAddress laddr) const
{
// We check extra carefully here since the first 4MB of the address space is identity-mapped.
// This code allows access outside of the known used address ranges to get caught.
InterruptDisabler disabler;
if (laddr.get() >= ksyms().first().address && laddr.get() <= ksyms().last().address)
return true;
if (is_kmalloc_address((void*)laddr.get()))
return true;
return validate_user_read(laddr);
}
bool Process::validate_user_read(LinearAddress laddr) const
{
InterruptDisabler disabler;
return MM.validate_user_read(*this, laddr);
}
bool Process::validate_user_write(LinearAddress laddr) const
{
InterruptDisabler disabler;
return MM.validate_user_write(*this, laddr);
}
pid_t Process::sys$getsid(pid_t pid)
{
if (pid == 0)
return m_sid;
InterruptDisabler disabler;
2018-11-07 20:38:18 +00:00
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
if (m_sid != process->m_sid)
return -EPERM;
return process->m_sid;
}
pid_t Process::sys$setsid()
{
InterruptDisabler disabler;
bool found_process_with_same_pgid_as_my_pid = false;
2018-11-07 20:38:18 +00:00
Process::for_each_in_pgrp(pid(), [&] (auto& process) {
found_process_with_same_pgid_as_my_pid = true;
return false;
});
if (found_process_with_same_pgid_as_my_pid)
return -EPERM;
m_sid = m_pid;
m_pgid = m_pid;
return m_sid;
}
pid_t Process::sys$getpgid(pid_t pid)
{
if (pid == 0)
return m_pgid;
InterruptDisabler disabler; // FIXME: Use a ProcessHandle
2018-11-07 20:38:18 +00:00
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
return process->m_pgid;
}
pid_t Process::sys$getpgrp()
{
return m_pgid;
}
static pid_t get_sid_from_pgid(pid_t pgid)
{
InterruptDisabler disabler;
2018-11-07 20:38:18 +00:00
auto* group_leader = Process::from_pid(pgid);
if (!group_leader)
return -1;
return group_leader->sid();
}
int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid)
{
InterruptDisabler disabler; // FIXME: Use a ProcessHandle
pid_t pid = specified_pid ? specified_pid : m_pid;
if (specified_pgid < 0)
return -EINVAL;
2018-11-07 20:38:18 +00:00
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid;
pid_t current_sid = get_sid_from_pgid(process->m_pgid);
pid_t new_sid = get_sid_from_pgid(new_pgid);
if (current_sid != new_sid) {
// Can't move a process between sessions.
return -EPERM;
}
// FIXME: There are more EPERM conditions to check for here..
process->m_pgid = new_pgid;
return 0;
}
pid_t Process::sys$tcgetpgrp(int fd)
{
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
if (!descriptor->isTTY())
return -ENOTTY;
2018-11-07 10:37:54 +00:00
auto& tty = *descriptor->tty();
if (&tty != m_tty)
return -ENOTTY;
return tty.pgid();
}
int Process::sys$tcsetpgrp(int fd, pid_t pgid)
{
if (pgid < 0)
return -EINVAL;
if (get_sid_from_pgid(pgid) != m_sid)
return -EINVAL;
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
2018-11-07 10:37:54 +00:00
if (!descriptor->isTTY())
return -ENOTTY;
2018-11-07 10:37:54 +00:00
auto& tty = *descriptor->tty();
if (&tty != m_tty)
return -ENOTTY;
tty.set_pgid(pgid);
return 0;
}
int Process::sys$getdtablesize()
{
return m_max_open_file_descriptors;
}
int Process::sys$dup(int old_fd)
{
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(old_fd);
if (!descriptor)
return -EBADF;
if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
return -EMFILE;
int new_fd = 0;
for (; new_fd < m_max_open_file_descriptors; ++new_fd) {
if (!m_file_descriptors[new_fd])
break;
}
2018-11-07 10:37:54 +00:00
m_file_descriptors[new_fd] = descriptor;
return new_fd;
}
int Process::sys$dup2(int old_fd, int new_fd)
{
2018-11-07 10:37:54 +00:00
auto* descriptor = file_descriptor(old_fd);
if (!descriptor)
return -EBADF;
if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
return -EMFILE;
2018-11-07 10:37:54 +00:00
m_file_descriptors[new_fd] = descriptor;
return new_fd;
}
Unix::sighandler_t Process::sys$signal(int signum, Unix::sighandler_t handler)
{
// FIXME: Fail with -EINVAL if attepmting to catch or ignore SIGKILL or SIGSTOP.
if (signum >= 32)
return (Unix::sighandler_t)-EINVAL;
dbgprintf("sys$signal: %d => L%x\n", signum, handler);
return nullptr;
}
int Process::sys$sigaction(int signum, const Unix::sigaction* act, Unix::sigaction* old_act)
{
// FIXME: Fail with -EINVAL if attepmting to change action for SIGKILL or SIGSTOP.
if (signum >= 32)
return -EINVAL;
VALIDATE_USER_READ(act, sizeof(Unix::sigaction));
InterruptDisabler disabler; // FIXME: This should use a narrower lock.
auto& action = m_signal_action_data[signum];
if (old_act) {
VALIDATE_USER_WRITE(old_act, sizeof(Unix::sigaction));
old_act->sa_flags = action.flags;
old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get();
old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get();
}
action.restorer = LinearAddress((dword)act->sa_restorer);
action.flags = act->sa_flags;
action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction);
return 0;
}
int Process::sys$getgroups(int count, gid_t* gids)
{
if (count < 0)
return -EINVAL;
ASSERT(m_gids.size() < MAX_PROCESS_GIDS);
if (!count)
return m_gids.size();
if (count != m_gids.size())
return -EINVAL;
VALIDATE_USER_WRITE(gids, sizeof(gid_t) * count);
size_t i = 0;
for (auto gid : m_gids)
gids[i++] = gid;
return 0;
}
int Process::sys$setgroups(size_t count, const gid_t* gids)
{
if (!is_root())
return -EPERM;
if (count >= MAX_PROCESS_GIDS)
return -EINVAL;
VALIDATE_USER_READ(gids, sizeof(gid_t) * count);
m_gids.clear();
m_gids.set(m_gid);
for (size_t i = 0; i < count; ++i)
m_gids.set(gids[i]);
return 0;
}