196 lines
No EOL
7.7 KiB
C++
196 lines
No EOL
7.7 KiB
C++
#include <fstream>
|
|
|
|
#include "armnn/IRuntime.hpp"
|
|
#include "armnn/INetwork.hpp"
|
|
#include "armnn/Types.hpp"
|
|
#include "armnnDeserializer/IDeserializer.hpp"
|
|
#include "armnnTfLiteParser/ITfLiteParser.hpp"
|
|
#include "armnnOnnxParser/IOnnxParser.hpp"
|
|
|
|
using namespace armnn;
|
|
|
|
class Ann
|
|
{
|
|
|
|
public:
|
|
int load(const char *modelPath, const char *inputName, const char *outputName, bool fastMath, bool saveCachedNetwork, const char *cachedNetworkPath)
|
|
{
|
|
BindingPointInfo inputInfo;
|
|
BindingPointInfo outputInfo;
|
|
INetworkPtr network = loadModel(modelPath, inputName, outputName, inputInfo, outputInfo);
|
|
|
|
auto n = network.get();
|
|
|
|
IOptimizedNetworkPtr optNet = OptimizeNetwork(n, fastMath, saveCachedNetwork, cachedNetworkPath);
|
|
NetworkId netId;
|
|
Status status = runtime->LoadNetwork(netId, std::move(optNet));
|
|
inputInfos[netId] = inputInfo;
|
|
outputInfos[netId] = outputInfo;
|
|
return netId;
|
|
}
|
|
|
|
void embed(NetworkId netId, const void *inputData, void *outputData)
|
|
{
|
|
const BindingPointInfo *inputInfo = &inputInfos[netId];
|
|
const BindingPointInfo *outputInfo = &outputInfos[netId];
|
|
InputTensors inputTensors = {{inputInfo->first, ConstTensor{inputInfo->second, inputData}}};
|
|
OutputTensors outputTensors = {{outputInfo->first, armnn::Tensor{outputInfo->second, outputData}}};
|
|
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
|
|
}
|
|
|
|
void unload(NetworkId netId)
|
|
{
|
|
runtime->UnloadNetwork(netId);
|
|
}
|
|
|
|
unsigned long shape(NetworkId netId, bool isInput)
|
|
{
|
|
const TensorShape shape = (isInput ? inputInfos : outputInfos)[netId].second.GetShape();
|
|
unsigned long s = 0;
|
|
for (unsigned int d = 0; d < shape.GetNumDimensions(); d++)
|
|
s |= ((unsigned long)shape[d]) << (d * 16); // stores up to 4 16-bit values in a 64-bit value
|
|
return s;
|
|
}
|
|
|
|
Ann(int tuningLevel, const char *tuningFile)
|
|
{
|
|
IRuntime::CreationOptions runtimeOptions;
|
|
BackendOptions backendOptions{"GpuAcc",
|
|
{
|
|
{"TuningLevel", tuningLevel},
|
|
{"MemoryOptimizerStrategy", "ConstantMemoryStrategy"}, // SingleAxisPriorityList or ConstantMemoryStrategy
|
|
}};
|
|
if (tuningFile)
|
|
backendOptions.AddOption({"TuningFile", tuningFile});
|
|
runtimeOptions.m_BackendOptions.emplace_back(backendOptions);
|
|
runtime = IRuntime::CreateRaw(runtimeOptions);
|
|
};
|
|
~Ann()
|
|
{
|
|
IRuntime::Destroy(runtime);
|
|
};
|
|
|
|
private:
|
|
INetworkPtr loadModel(const char *modelPath, const char *inputName, const char *outputName, BindingPointInfo &inputInfo, BindingPointInfo &outputInfo)
|
|
{
|
|
const auto path = std::string(modelPath);
|
|
if (path.rfind(".tflite") == path.length() - 7) // endsWith()
|
|
{
|
|
auto parser = armnnTfLiteParser::ITfLiteParser::CreateRaw();
|
|
INetworkPtr network = parser->CreateNetworkFromBinaryFile(modelPath);
|
|
auto inputBinding = parser->GetNetworkInputBindingInfo(0, inputName);
|
|
inputInfo = getInputTensorInfo(inputBinding.first, inputBinding.second);
|
|
outputInfo = parser->GetNetworkOutputBindingInfo(0, outputName);
|
|
return network;
|
|
}
|
|
else if (path.rfind(".onnx") == path.length() - 5) // endsWith()
|
|
{
|
|
auto parser = armnnOnnxParser::IOnnxParser::CreateRaw();
|
|
INetworkPtr network = parser->CreateNetworkFromBinaryFile(modelPath);
|
|
auto inputBinding = parser->GetNetworkInputBindingInfo(inputName);
|
|
inputInfo = getInputTensorInfo(inputBinding.first, inputBinding.second);
|
|
outputInfo = parser->GetNetworkOutputBindingInfo(outputName);
|
|
return network;
|
|
}
|
|
else
|
|
{
|
|
std::ifstream ifs(path, std::ifstream::in | std::ifstream::binary);
|
|
auto parser = armnnDeserializer::IDeserializer::CreateRaw();
|
|
INetworkPtr network = parser->CreateNetworkFromBinary(ifs);
|
|
auto inputBinding = parser->GetNetworkInputBindingInfo(0, inputName);
|
|
inputInfo = getInputTensorInfo(inputBinding.m_BindingId, inputBinding.m_TensorInfo);
|
|
auto outputBinding = parser->GetNetworkOutputBindingInfo(0, outputName);
|
|
outputInfo = {outputBinding.m_BindingId, outputBinding.m_TensorInfo};
|
|
return network;
|
|
}
|
|
}
|
|
|
|
BindingPointInfo getInputTensorInfo(LayerBindingId inputBindingId, TensorInfo &info)
|
|
{
|
|
const auto newInfo = TensorInfo{info.GetShape(), info.GetDataType(),
|
|
info.GetQuantizationScale(),
|
|
info.GetQuantizationOffset(),
|
|
true};
|
|
return {inputBindingId, newInfo};
|
|
}
|
|
|
|
IOptimizedNetworkPtr OptimizeNetwork(INetwork *network, bool fastMath, bool saveCachedNetwork, const char *cachedNetworkPath)
|
|
{
|
|
const bool allowExpandedDims = false;
|
|
const ShapeInferenceMethod shapeInferenceMethod = ShapeInferenceMethod::ValidateOnly;
|
|
|
|
OptimizerOptionsOpaque options;
|
|
options.SetReduceFp32ToFp16(false);
|
|
options.SetShapeInferenceMethod(shapeInferenceMethod);
|
|
options.SetAllowExpandedDims(allowExpandedDims);
|
|
|
|
BackendOptions gpuAcc("GpuAcc", {{"FastMathEnabled", fastMath}});
|
|
if (cachedNetworkPath)
|
|
{
|
|
gpuAcc.AddOption({"SaveCachedNetwork", saveCachedNetwork});
|
|
gpuAcc.AddOption({"CachedNetworkFilePath", cachedNetworkPath});
|
|
}
|
|
options.AddModelOption(gpuAcc);
|
|
|
|
// No point in using ARMNN for CPU, use ONNX instead.
|
|
// BackendOptions cpuAcc("CpuAcc",
|
|
// {
|
|
// {"FastMathEnabled", true},
|
|
// {"NumberOfThreads", 0},
|
|
// });
|
|
// options.AddModelOption(cpuAcc);
|
|
|
|
BackendOptions allowExDimOpt("AllowExpandedDims",
|
|
{{"AllowExpandedDims", allowExpandedDims}});
|
|
options.AddModelOption(allowExDimOpt);
|
|
BackendOptions shapeInferOpt("ShapeInferenceMethod",
|
|
{{"InferAndValidate", shapeInferenceMethod == ShapeInferenceMethod::InferAndValidate}});
|
|
options.AddModelOption(shapeInferOpt);
|
|
|
|
std::vector<BackendId> backends = {BackendId("GpuAcc")};
|
|
return Optimize(*network, backends, runtime->GetDeviceSpec(), options);
|
|
}
|
|
IRuntime *runtime;
|
|
std::map<NetworkId, BindingPointInfo> inputInfos;
|
|
std::map<NetworkId, BindingPointInfo> outputInfos;
|
|
};
|
|
|
|
extern "C" void *init(int logLevel, int tuningLevel, const char *tuningFile)
|
|
{
|
|
LogSeverity level = static_cast<LogSeverity>(logLevel);
|
|
ConfigureLogging(true, true, level);
|
|
|
|
Ann *ann = new Ann(tuningLevel, tuningFile);
|
|
return ann;
|
|
}
|
|
|
|
extern "C" void destroy(void *ann)
|
|
{
|
|
delete ((Ann *)ann);
|
|
}
|
|
|
|
extern "C" int load(void *ann,
|
|
const char *path,
|
|
const char *inputName,
|
|
const char *ouputName,
|
|
bool fastMath,
|
|
bool saveCachedNetwork,
|
|
const char *cachedNetworkPath)
|
|
{
|
|
return ((Ann *)ann)->load(path, inputName, ouputName, fastMath, saveCachedNetwork, cachedNetworkPath);
|
|
}
|
|
|
|
extern "C" void unload(void *ann, NetworkId netId)
|
|
{
|
|
((Ann *)ann)->unload(netId);
|
|
}
|
|
|
|
extern "C" void embed(void *ann, NetworkId netId, void *inputData, void *outputData)
|
|
{
|
|
((Ann *)ann)->embed(netId, inputData, outputData);
|
|
}
|
|
|
|
extern "C" unsigned long shape(void *ann, NetworkId netId, bool isInput)
|
|
{
|
|
return ((Ann *)ann)->shape(netId, isInput);
|
|
} |