openclip.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. import tempfile
  2. import warnings
  3. from dataclasses import dataclass, field
  4. from pathlib import Path
  5. import open_clip
  6. import torch
  7. from transformers import AutoTokenizer
  8. from .optimize import optimize
  9. from .util import get_model_path, save_config
  10. @dataclass
  11. class OpenCLIPModelConfig:
  12. name: str
  13. pretrained: str
  14. image_size: int = field(init=False)
  15. sequence_length: int = field(init=False)
  16. def __post_init__(self) -> None:
  17. open_clip_cfg = open_clip.get_model_config(self.name)
  18. if open_clip_cfg is None:
  19. raise ValueError(f"Unknown model {self.name}")
  20. self.image_size = open_clip_cfg["vision_cfg"]["image_size"]
  21. self.sequence_length = open_clip_cfg["text_cfg"]["context_length"]
  22. def to_onnx(
  23. model_cfg: OpenCLIPModelConfig,
  24. output_dir_visual: Path | str | None = None,
  25. output_dir_textual: Path | str | None = None,
  26. ) -> None:
  27. with tempfile.TemporaryDirectory() as tmpdir:
  28. model = open_clip.create_model(
  29. model_cfg.name,
  30. pretrained=model_cfg.pretrained,
  31. jit=False,
  32. cache_dir=tmpdir,
  33. require_pretrained=True,
  34. )
  35. text_vision_cfg = open_clip.get_model_config(model_cfg.name)
  36. for param in model.parameters():
  37. param.requires_grad_(False)
  38. if output_dir_visual is not None:
  39. output_dir_visual = Path(output_dir_visual)
  40. visual_path = get_model_path(output_dir_visual)
  41. save_config(open_clip.get_model_preprocess_cfg(model), output_dir_visual / "preprocess_cfg.json")
  42. save_config(text_vision_cfg, output_dir_visual.parent / "config.json")
  43. export_image_encoder(model, model_cfg, visual_path)
  44. optimize(visual_path)
  45. if output_dir_textual is not None:
  46. output_dir_textual = Path(output_dir_textual)
  47. textual_path = get_model_path(output_dir_textual)
  48. tokenizer_name = text_vision_cfg["text_cfg"].get("hf_tokenizer_name", "openai/clip-vit-base-patch32")
  49. AutoTokenizer.from_pretrained(tokenizer_name).save_pretrained(output_dir_textual)
  50. export_text_encoder(model, model_cfg, textual_path)
  51. optimize(textual_path)
  52. def export_image_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
  53. output_path = Path(output_path)
  54. def encode_image(image: torch.Tensor) -> torch.Tensor:
  55. return model.encode_image(image, normalize=True)
  56. args = (torch.randn(1, 3, model_cfg.image_size, model_cfg.image_size),)
  57. traced = torch.jit.trace(encode_image, args)
  58. with warnings.catch_warnings():
  59. warnings.simplefilter("ignore", UserWarning)
  60. torch.onnx.export(
  61. traced,
  62. args,
  63. output_path.as_posix(),
  64. input_names=["image"],
  65. output_names=["image_embedding"],
  66. opset_version=17,
  67. dynamic_axes={"image": {0: "batch_size"}},
  68. )
  69. def export_text_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
  70. output_path = Path(output_path)
  71. def encode_text(text: torch.Tensor) -> torch.Tensor:
  72. return model.encode_text(text, normalize=True)
  73. args = (torch.ones(1, model_cfg.sequence_length, dtype=torch.int32),)
  74. traced = torch.jit.trace(encode_text, args)
  75. with warnings.catch_warnings():
  76. warnings.simplefilter("ignore", UserWarning)
  77. torch.onnx.export(
  78. traced,
  79. args,
  80. output_path.as_posix(),
  81. input_names=["text"],
  82. output_names=["text_embedding"],
  83. opset_version=17,
  84. dynamic_axes={"text": {0: "batch_size"}},
  85. )