12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- import tempfile
- import warnings
- from pathlib import Path
- import torch
- from multilingual_clip.pt_multilingual_clip import MultilingualCLIP
- from transformers import AutoTokenizer
- from .openclip import OpenCLIPModelConfig
- from .openclip import to_onnx as openclip_to_onnx
- from .optimize import optimize
- from .util import get_model_path
- _MCLIP_TO_OPENCLIP = {
- "M-CLIP/XLM-Roberta-Large-Vit-B-32": OpenCLIPModelConfig("ViT-B-32", "openai"),
- "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus": OpenCLIPModelConfig("ViT-B-16-plus-240", "laion400m_e32"),
- "M-CLIP/LABSE-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"),
- "M-CLIP/XLM-Roberta-Large-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"),
- }
- def to_onnx(
- model_name: str,
- output_dir_visual: Path | str,
- output_dir_textual: Path | str,
- ) -> None:
- textual_path = get_model_path(output_dir_textual)
- with tempfile.TemporaryDirectory() as tmpdir:
- model = MultilingualCLIP.from_pretrained(model_name, cache_dir=tmpdir)
- AutoTokenizer.from_pretrained(model_name).save_pretrained(output_dir_textual)
- for param in model.parameters():
- param.requires_grad_(False)
- export_text_encoder(model, textual_path)
- openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], output_dir_visual)
- optimize(textual_path)
- def export_text_encoder(model: MultilingualCLIP, output_path: Path | str) -> None:
- output_path = Path(output_path)
- def forward(self: MultilingualCLIP, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
- embs = self.transformer(input_ids, attention_mask)[0]
- embs = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
- embs = self.LinearTransformation(embs)
- return torch.nn.functional.normalize(embs, dim=-1)
- # unfortunately need to monkeypatch for tracing to work here
- # otherwise it hits the 2GiB protobuf serialization limit
- MultilingualCLIP.forward = forward
- args = (torch.ones(1, 77, dtype=torch.int32), torch.ones(1, 77, dtype=torch.int32))
- with warnings.catch_warnings():
- warnings.simplefilter("ignore", UserWarning)
- torch.onnx.export(
- model,
- args,
- output_path.as_posix(),
- input_names=["input_ids", "attention_mask"],
- output_names=["text_embedding"],
- opset_version=17,
- dynamic_axes={
- "input_ids": {0: "batch_size", 1: "sequence_length"},
- "attention_mask": {0: "batch_size", 1: "sequence_length"},
- },
- )
|