123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- from pathlib import Path
- from typing import Any
- import cv2
- import numpy as np
- import onnxruntime as ort
- from insightface.model_zoo import ArcFaceONNX, RetinaFace
- from insightface.utils.face_align import norm_crop
- from app.config import clean_name
- from app.schemas import BoundingBox, Face, ModelType, ndarray_f32
- from .base import InferenceModel
- class FaceRecognizer(InferenceModel):
- _model_type = ModelType.FACIAL_RECOGNITION
- def __init__(
- self,
- model_name: str,
- min_score: float = 0.7,
- cache_dir: Path | str | None = None,
- **model_kwargs: Any,
- ) -> None:
- self.min_score = model_kwargs.pop("minScore", min_score)
- super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
- def _load(self) -> None:
- self.det_model = RetinaFace(
- session=ort.InferenceSession(
- self.det_file.as_posix(),
- sess_options=self.sess_options,
- providers=self.providers,
- provider_options=self.provider_options,
- ),
- )
- self.rec_model = ArcFaceONNX(
- self.rec_file.as_posix(),
- session=ort.InferenceSession(
- self.rec_file.as_posix(),
- sess_options=self.sess_options,
- providers=self.providers,
- provider_options=self.provider_options,
- ),
- )
- self.det_model.prepare(
- ctx_id=0,
- det_thresh=self.min_score,
- input_size=(640, 640),
- )
- self.rec_model.prepare(ctx_id=0)
- def _predict(self, image: ndarray_f32 | bytes) -> list[Face]:
- if isinstance(image, bytes):
- image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR)
- bboxes, kpss = self.det_model.detect(image)
- if bboxes.size == 0:
- return []
- assert isinstance(image, np.ndarray) and isinstance(kpss, np.ndarray)
- scores = bboxes[:, 4].tolist()
- bboxes = bboxes[:, :4].round().tolist()
- results = []
- height, width, _ = image.shape
- for (x1, y1, x2, y2), score, kps in zip(bboxes, scores, kpss):
- cropped_img = norm_crop(image, kps)
- embedding: ndarray_f32 = self.rec_model.get_feat(cropped_img)[0]
- face: Face = {
- "imageWidth": width,
- "imageHeight": height,
- "boundingBox": {
- "x1": x1,
- "y1": y1,
- "x2": x2,
- "y2": y2,
- },
- "score": score,
- "embedding": embedding,
- }
- results.append(face)
- return results
- @property
- def cached(self) -> bool:
- return self.det_file.is_file() and self.rec_file.is_file()
- @property
- def det_file(self) -> Path:
- return self.cache_dir / "detection" / "model.onnx"
- @property
- def rec_file(self) -> Path:
- return self.cache_dir / "recognition" / "model.onnx"
- def configure(self, **model_kwargs: Any) -> None:
- self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)
|