main.py 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. import asyncio
  2. import logging
  3. import os
  4. from concurrent.futures import ThreadPoolExecutor
  5. from typing import Any
  6. import orjson
  7. import uvicorn
  8. from fastapi import FastAPI, Form, HTTPException, UploadFile
  9. from fastapi.responses import ORJSONResponse
  10. from starlette.formparsers import MultiPartParser
  11. from app.models.base import InferenceModel
  12. from .config import log, settings
  13. from .models.cache import ModelCache
  14. from .schemas import (
  15. MessageResponse,
  16. ModelType,
  17. TextResponse,
  18. )
  19. MultiPartParser.max_file_size = 2**24 # spools to disk if payload is 16 MiB or larger
  20. app = FastAPI()
  21. def init_state() -> None:
  22. app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
  23. log.info(
  24. (
  25. "Created in-memory cache with unloading "
  26. f"{f'after {settings.model_ttl}s of inactivity' if settings.model_ttl > 0 else 'disabled'}."
  27. )
  28. )
  29. # asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
  30. app.state.thread_pool = ThreadPoolExecutor(settings.request_threads)
  31. log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
  32. @app.on_event("startup")
  33. async def startup_event() -> None:
  34. init_state()
  35. @app.get("/", response_model=MessageResponse)
  36. async def root() -> dict[str, str]:
  37. return {"message": "Immich ML"}
  38. @app.get("/ping", response_model=TextResponse)
  39. def ping() -> str:
  40. return "pong"
  41. @app.post("/predict")
  42. async def predict(
  43. model_name: str = Form(alias="modelName"),
  44. model_type: ModelType = Form(alias="modelType"),
  45. options: str = Form(default="{}"),
  46. text: str | None = Form(default=None),
  47. image: UploadFile | None = None,
  48. ) -> Any:
  49. if image is not None:
  50. inputs: str | bytes = await image.read()
  51. elif text is not None:
  52. inputs = text
  53. else:
  54. raise HTTPException(400, "Either image or text must be provided")
  55. model: InferenceModel = await app.state.model_cache.get(model_name, model_type, **orjson.loads(options))
  56. outputs = await run(model, inputs)
  57. return ORJSONResponse(outputs)
  58. async def run(model: InferenceModel, inputs: Any) -> Any:
  59. return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
  60. if __name__ == "__main__":
  61. is_dev = os.getenv("NODE_ENV") == "development"
  62. uvicorn.run(
  63. "app.main:app",
  64. host=settings.host,
  65. port=settings.port,
  66. reload=is_dev,
  67. workers=settings.workers,
  68. log_config=None,
  69. access_log=log.isEnabledFor(logging.INFO),
  70. )