clip.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. import os
  2. import zipfile
  3. from typing import Any, Literal
  4. import onnxruntime as ort
  5. import torch
  6. from clip_server.model.clip import BICUBIC, _convert_image_to_rgb
  7. from clip_server.model.clip_onnx import _MODELS, _S3_BUCKET_V2, CLIPOnnxModel, download_model
  8. from clip_server.model.pretrained_models import _VISUAL_MODEL_IMAGE_SIZE
  9. from clip_server.model.tokenization import Tokenizer
  10. from PIL.Image import Image
  11. from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
  12. from ..schemas import ModelType
  13. from .base import InferenceModel
  14. _ST_TO_JINA_MODEL_NAME = {
  15. "clip-ViT-B-16": "ViT-B-16::openai",
  16. "clip-ViT-B-32": "ViT-B-32::openai",
  17. "clip-ViT-B-32-multilingual-v1": "M-CLIP/XLM-Roberta-Large-Vit-B-32",
  18. "clip-ViT-L-14": "ViT-L-14::openai",
  19. }
  20. class CLIPEncoder(InferenceModel):
  21. _model_type = ModelType.CLIP
  22. def __init__(
  23. self,
  24. model_name: str,
  25. cache_dir: str | None = None,
  26. mode: Literal["text", "vision"] | None = None,
  27. **model_kwargs: Any,
  28. ) -> None:
  29. if mode is not None and mode not in ("text", "vision"):
  30. raise ValueError(f"Mode must be 'text', 'vision', or omitted; got '{mode}'")
  31. if "vit-b" not in model_name.lower():
  32. raise ValueError(f"Only ViT-B models are currently supported; got '{model_name}'")
  33. self.mode = mode
  34. jina_model_name = self._get_jina_model_name(model_name)
  35. super().__init__(jina_model_name, cache_dir, **model_kwargs)
  36. def _download(self, **model_kwargs: Any) -> None:
  37. models: tuple[tuple[str, str], tuple[str, str]] = _MODELS[self.model_name]
  38. text_onnx_path = self.cache_dir / "textual.onnx"
  39. vision_onnx_path = self.cache_dir / "visual.onnx"
  40. if not text_onnx_path.is_file():
  41. self._download_model(*models[0])
  42. if not vision_onnx_path.is_file():
  43. self._download_model(*models[1])
  44. def _load(self, **model_kwargs: Any) -> None:
  45. if self.mode == "text" or self.mode is None:
  46. self.text_model = ort.InferenceSession(
  47. self.cache_dir / "textual.onnx",
  48. sess_options=self.sess_options,
  49. providers=self.providers,
  50. provider_options=self.provider_options,
  51. )
  52. self.text_outputs = [output.name for output in self.text_model.get_outputs()]
  53. self.tokenizer = Tokenizer(self.model_name)
  54. if self.mode == "vision" or self.mode is None:
  55. self.vision_model = ort.InferenceSession(
  56. self.cache_dir / "visual.onnx",
  57. sess_options=self.sess_options,
  58. providers=self.providers,
  59. provider_options=self.provider_options,
  60. )
  61. self.vision_outputs = [output.name for output in self.vision_model.get_outputs()]
  62. image_size = _VISUAL_MODEL_IMAGE_SIZE[CLIPOnnxModel.get_model_name(self.model_name)]
  63. self.transform = _transform_pil_image(image_size)
  64. def _predict(self, image_or_text: Image | str) -> list[float]:
  65. match image_or_text:
  66. case Image():
  67. if self.mode == "text":
  68. raise TypeError("Cannot encode image as text-only model")
  69. pixel_values = self.transform(image_or_text)
  70. assert isinstance(pixel_values, torch.Tensor)
  71. pixel_values = torch.unsqueeze(pixel_values, 0).numpy()
  72. outputs = self.vision_model.run(self.vision_outputs, {"pixel_values": pixel_values})
  73. case str():
  74. if self.mode == "vision":
  75. raise TypeError("Cannot encode text as vision-only model")
  76. text_inputs: dict[str, torch.Tensor] = self.tokenizer(image_or_text)
  77. inputs = {
  78. "input_ids": text_inputs["input_ids"].int().numpy(),
  79. "attention_mask": text_inputs["attention_mask"].int().numpy(),
  80. }
  81. outputs = self.text_model.run(self.text_outputs, inputs)
  82. case _:
  83. raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
  84. return outputs[0][0].tolist()
  85. def _get_jina_model_name(self, model_name: str) -> str:
  86. if model_name in _MODELS:
  87. return model_name
  88. elif model_name in _ST_TO_JINA_MODEL_NAME:
  89. print(
  90. (f"Warning: Sentence-Transformer model names such as '{model_name}' are no longer supported."),
  91. (f"Using '{_ST_TO_JINA_MODEL_NAME[model_name]}' instead as it is the best match for '{model_name}'."),
  92. )
  93. return _ST_TO_JINA_MODEL_NAME[model_name]
  94. else:
  95. raise ValueError(f"Unknown model name {model_name}.")
  96. def _download_model(self, model_name: str, model_md5: str) -> bool:
  97. # downloading logic is adapted from clip-server's CLIPOnnxModel class
  98. download_model(
  99. url=_S3_BUCKET_V2 + model_name,
  100. target_folder=self.cache_dir.as_posix(),
  101. md5sum=model_md5,
  102. with_resume=True,
  103. )
  104. file = self.cache_dir / model_name.split("/")[1]
  105. if file.suffix == ".zip":
  106. with zipfile.ZipFile(file, "r") as zip_ref:
  107. zip_ref.extractall(self.cache_dir)
  108. os.remove(file)
  109. return True
  110. # same as `_transform_blob` without `_blob2image`
  111. def _transform_pil_image(n_px: int) -> Compose:
  112. return Compose(
  113. [
  114. Resize(n_px, interpolation=BICUBIC),
  115. CenterCrop(n_px),
  116. _convert_image_to_rgb,
  117. ToTensor(),
  118. Normalize(
  119. (0.48145466, 0.4578275, 0.40821073),
  120. (0.26862954, 0.26130258, 0.27577711),
  121. ),
  122. ]
  123. )