|
@@ -5,7 +5,7 @@ import uvicorn
|
|
|
|
|
|
from insightface.app import FaceAnalysis
|
|
|
from transformers import pipeline
|
|
|
-from sentence_transformers import SentenceTransformer, util
|
|
|
+from sentence_transformers import SentenceTransformer
|
|
|
from PIL import Image
|
|
|
from fastapi import FastAPI
|
|
|
from pydantic import BaseModel
|
|
@@ -20,22 +20,32 @@ class ClipRequestBody(BaseModel):
|
|
|
|
|
|
|
|
|
classification_model = os.getenv(
|
|
|
- 'MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50')
|
|
|
-object_model = os.getenv('MACHINE_LEARNING_OBJECT_MODEL', 'hustvl/yolos-tiny')
|
|
|
-clip_image_model = os.getenv(
|
|
|
- 'MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32')
|
|
|
-clip_text_model = os.getenv(
|
|
|
- 'MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
|
|
|
+ "MACHINE_LEARNING_CLASSIFICATION_MODEL", "microsoft/resnet-50"
|
|
|
+)
|
|
|
+object_model = os.getenv("MACHINE_LEARNING_OBJECT_MODEL", "hustvl/yolos-tiny")
|
|
|
+clip_image_model = os.getenv("MACHINE_LEARNING_CLIP_IMAGE_MODEL", "clip-ViT-B-32")
|
|
|
+clip_text_model = os.getenv("MACHINE_LEARNING_CLIP_TEXT_MODEL", "clip-ViT-B-32")
|
|
|
facial_recognition_model = os.getenv(
|
|
|
- 'MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL', 'buffalo_l')
|
|
|
+ "MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL", "buffalo_l"
|
|
|
+)
|
|
|
|
|
|
-cache_folder = os.getenv('MACHINE_LEARNING_CACHE_FOLDER', '/cache')
|
|
|
+cache_folder = os.getenv("MACHINE_LEARNING_CACHE_FOLDER", "/cache")
|
|
|
|
|
|
_model_cache = {}
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
|
|
|
+@app.on_event("startup")
|
|
|
+async def startup_event():
|
|
|
+ # Get all models
|
|
|
+ _get_model(object_model, "object-detection")
|
|
|
+ _get_model(classification_model, "image-classification")
|
|
|
+ _get_model(clip_image_model)
|
|
|
+ _get_model(clip_text_model)
|
|
|
+ _get_model(facial_recognition_model, "facial-recognition")
|
|
|
+
|
|
|
+
|
|
|
@app.get("/")
|
|
|
async def root():
|
|
|
return {"message": "Immich ML"}
|
|
@@ -48,14 +58,14 @@ def ping():
|
|
|
|
|
|
@app.post("/object-detection/detect-object", status_code=200)
|
|
|
def object_detection(payload: MlRequestBody):
|
|
|
- model = _get_model(object_model, 'object-detection')
|
|
|
+ model = _get_model(object_model, "object-detection")
|
|
|
assetPath = payload.thumbnailPath
|
|
|
return run_engine(model, assetPath)
|
|
|
|
|
|
|
|
|
@app.post("/image-classifier/tag-image", status_code=200)
|
|
|
def image_classification(payload: MlRequestBody):
|
|
|
- model = _get_model(classification_model, 'image-classification')
|
|
|
+ model = _get_model(classification_model, "image-classification")
|
|
|
assetPath = payload.thumbnailPath
|
|
|
return run_engine(model, assetPath)
|
|
|
|
|
@@ -76,31 +86,32 @@ def clip_encode_text(payload: ClipRequestBody):
|
|
|
|
|
|
@app.post("/facial-recognition/detect-faces", status_code=200)
|
|
|
def facial_recognition(payload: MlRequestBody):
|
|
|
- model = _get_model(facial_recognition_model, 'facial-recognition')
|
|
|
+ model = _get_model(facial_recognition_model, "facial-recognition")
|
|
|
assetPath = payload.thumbnailPath
|
|
|
img = cv.imread(assetPath)
|
|
|
height, width, _ = img.shape
|
|
|
results = []
|
|
|
faces = model.get(img)
|
|
|
+
|
|
|
for face in faces:
|
|
|
if face.det_score < 0.7:
|
|
|
continue
|
|
|
x1, y1, x2, y2 = face.bbox
|
|
|
- # min face size as percent of original image
|
|
|
- # if (x2 - x1) / width < 0.03 or (y2 - y1) / height < 0.05:
|
|
|
- # continue
|
|
|
- results.append({
|
|
|
- "imageWidth": width,
|
|
|
- "imageHeight": height,
|
|
|
- "boundingBox": {
|
|
|
- "x1": round(x1),
|
|
|
- "y1": round(y1),
|
|
|
- "x2": round(x2),
|
|
|
- "y2": round(y2),
|
|
|
- },
|
|
|
- "score": face.det_score.item(),
|
|
|
- "embedding": face.normed_embedding.tolist()
|
|
|
- })
|
|
|
+
|
|
|
+ results.append(
|
|
|
+ {
|
|
|
+ "imageWidth": width,
|
|
|
+ "imageHeight": height,
|
|
|
+ "boundingBox": {
|
|
|
+ "x1": round(x1),
|
|
|
+ "y1": round(y1),
|
|
|
+ "x2": round(x2),
|
|
|
+ "y2": round(y2),
|
|
|
+ },
|
|
|
+ "score": face.det_score.item(),
|
|
|
+ "embedding": face.normed_embedding.tolist(),
|
|
|
+ }
|
|
|
+ )
|
|
|
return results
|
|
|
|
|
|
|
|
@@ -109,11 +120,11 @@ def run_engine(engine, path):
|
|
|
predictions = engine(path)
|
|
|
|
|
|
for index, pred in enumerate(predictions):
|
|
|
- tags = pred['label'].split(', ')
|
|
|
- if (pred['score'] > 0.9):
|
|
|
+ tags = pred["label"].split(", ")
|
|
|
+ if pred["score"] > 0.9:
|
|
|
result = [*result, *tags]
|
|
|
|
|
|
- if (len(result) > 1):
|
|
|
+ if len(result) > 1:
|
|
|
result = list(set(result))
|
|
|
|
|
|
return result
|
|
@@ -121,25 +132,27 @@ def run_engine(engine, path):
|
|
|
|
|
|
def _get_model(model, task=None):
|
|
|
global _model_cache
|
|
|
- key = '|'.join([model, str(task)])
|
|
|
+ key = "|".join([model, str(task)])
|
|
|
if key not in _model_cache:
|
|
|
if task:
|
|
|
- if task == 'facial-recognition':
|
|
|
+ if task == "facial-recognition":
|
|
|
face_model = FaceAnalysis(
|
|
|
- name=model, root=cache_folder, allowed_modules=["detection", "recognition"])
|
|
|
+ name=model,
|
|
|
+ root=cache_folder,
|
|
|
+ allowed_modules=["detection", "recognition"],
|
|
|
+ )
|
|
|
face_model.prepare(ctx_id=0, det_size=(640, 640))
|
|
|
_model_cache[key] = face_model
|
|
|
else:
|
|
|
_model_cache[key] = pipeline(model=model, task=task)
|
|
|
else:
|
|
|
- _model_cache[key] = SentenceTransformer(
|
|
|
- model, cache_folder=cache_folder)
|
|
|
+ _model_cache[key] = SentenceTransformer(model, cache_folder=cache_folder)
|
|
|
return _model_cache[key]
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
- host = os.getenv('MACHINE_LEARNING_HOST', '0.0.0.0')
|
|
|
- port = int(os.getenv('MACHINE_LEARNING_PORT', 3003))
|
|
|
- is_dev = os.getenv('NODE_ENV') == 'development'
|
|
|
+ host = os.getenv("MACHINE_LEARNING_HOST", "0.0.0.0")
|
|
|
+ port = int(os.getenv("MACHINE_LEARNING_PORT", 3003))
|
|
|
+ is_dev = os.getenv("NODE_ENV") == "development"
|
|
|
|
|
|
uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1)
|