feat(ml): ARM NN acceleration

This commit is contained in:
Fynn Petersen-Frey 2023-11-04 09:34:19 +01:00 committed by Fynn Petersen-Frey
parent 767fe87b2e
commit 5f6ad9e239
4 changed files with 86 additions and 6 deletions

View file

@ -20,6 +20,7 @@ dependencies:
- torchvision
- transformers==4.*
- pip:
- multilingual-clip
- onnx-simplifier
- multilingual-clip
- onnx-simplifier
- tensorflow
category: main

View file

@ -0,0 +1,70 @@
import tempfile
from pathlib import Path
import tensorflow as tf
from transformers import TFCLIPModel
from .util import ModelType, get_model_path
class _CLIPWrapper(tf.Module):
def __init__(self, model_name: str):
super(_CLIPWrapper)
self.model = TFCLIPModel.from_pretrained(model_name)
@tf.function()
def encode_image(self, input):
return self.model.get_image_features(input)
@tf.function()
def encode_text(self, input):
return self.model.get_text_features(input)
# exported model signatures use batch size 2 because of the following reasons:
# 1. ARM-NN cannot use dynamic batch sizes
# 2. batch size 1 creates a larger TF-Lite model that uses a lot (50%) more RAM
# 3. batch size 2 is ~50% faster on GPU than 1 while 4 (or larger) are not faster
# 4. batch size >2 wastes more computation if only a single image is processed
BATCH_SIZE = 2
SIGNATURE_TEXT = "encode_text"
SIGNATURE_IMAGE = "encode_image"
def to_tflite(
model_name,
output_path_image: Path | str | None,
output_path_text: Path | str | None,
context_length: int = 77,
):
with tempfile.TemporaryDirectory() as tmpdir:
_export_temporary_tf_model(model_name, tmpdir, context_length)
if output_path_image is not None:
image_path = get_model_path(output_path_image, ModelType.TFLITE)
_export_tflite_model(tmpdir, SIGNATURE_IMAGE, image_path.as_posix())
if output_path_text is not None:
text_path = get_model_path(output_path_text, ModelType.TFLITE)
_export_tflite_model(tmpdir, SIGNATURE_TEXT, text_path.as_posix())
def _export_temporary_tf_model(model_name, tmp_path: str, context_length: int):
wrapper = _CLIPWrapper(model_name)
conf = wrapper.model.config.vision_config
spec_visual = tf.TensorSpec(
shape=(BATCH_SIZE, conf.num_channels, conf.image_size, conf.image_size), dtype=tf.float32
)
encode_image = wrapper.encode_image.get_concrete_function(spec_visual)
spec_text = tf.TensorSpec(shape=(BATCH_SIZE, context_length), dtype=tf.int32)
encode_text = wrapper.encode_text.get_concrete_function(spec_text)
signatures = {"encode_text": encode_text, "encode_image": encode_image}
tf.saved_model.save(wrapper, tmp_path, signatures)
def _export_tflite_model(tmp_path: str, signature: str, output_path: str):
converter = tf.lite.TFLiteConverter.from_saved_model(tmp_path, signature_keys=[signature])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float32]
tflite_model = converter.convert()
with open(output_path, "wb") as f:
f.write(tflite_model)

View file

@ -1,12 +1,18 @@
import json
from enum import Enum
from pathlib import Path
from typing import Any
def get_model_path(output_dir: Path | str) -> Path:
class ModelType(Enum):
ONNX = "onnx"
TFLITE = "tflite"
def get_model_path(output_dir: Path | str, model_type: ModelType = ModelType.ONNX) -> Path:
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
return output_dir / "model.onnx"
return output_dir / f"model.{model_type.value}"
def save_config(config: Any, output_path: Path | str) -> None:

View file

@ -4,7 +4,7 @@ from pathlib import Path
from tempfile import TemporaryDirectory
from huggingface_hub import create_repo, login, upload_folder
from models import mclip, openclip
from models import mclip, openclip, tfclip
from rich.progress import Progress
models = [
@ -37,9 +37,10 @@ models = [
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
"openai/clip-vit-base-patch32",
]
login(token=os.environ["HF_AUTH_TOKEN"])
# login(token=os.environ["HF_AUTH_TOKEN"])
with Progress() as progress:
task1 = progress.add_task("[green]Exporting models...", total=len(models))
@ -65,6 +66,8 @@ with Progress() as progress:
textual_dir = tmpdir / model_name / "textual"
if model.startswith("M-CLIP"):
mclip.to_onnx(model, visual_dir, textual_dir)
elif "/" in model:
tfclip.to_tflite(model, visual_dir.as_posix(), textual_dir.as_posix())
else:
name, _, pretrained = model_name.partition("__")
openclip.to_onnx(openclip.OpenCLIPModelConfig(name, pretrained), visual_dir, textual_dir)