|
@@ -1,4 +1,3 @@
|
|
-import zipfile
|
|
|
|
from pathlib import Path
|
|
from pathlib import Path
|
|
from typing import Any
|
|
from typing import Any
|
|
|
|
|
|
@@ -7,8 +6,8 @@ import numpy as np
|
|
import onnxruntime as ort
|
|
import onnxruntime as ort
|
|
from insightface.model_zoo import ArcFaceONNX, RetinaFace
|
|
from insightface.model_zoo import ArcFaceONNX, RetinaFace
|
|
from insightface.utils.face_align import norm_crop
|
|
from insightface.utils.face_align import norm_crop
|
|
-from insightface.utils.storage import BASE_REPO_URL, download_file
|
|
|
|
|
|
|
|
|
|
+from app.config import clean_name
|
|
from app.schemas import ModelType, ndarray_f32
|
|
from app.schemas import ModelType, ndarray_f32
|
|
|
|
|
|
from .base import InferenceModel
|
|
from .base import InferenceModel
|
|
@@ -25,37 +24,21 @@ class FaceRecognizer(InferenceModel):
|
|
**model_kwargs: Any,
|
|
**model_kwargs: Any,
|
|
) -> None:
|
|
) -> None:
|
|
self.min_score = model_kwargs.pop("minScore", min_score)
|
|
self.min_score = model_kwargs.pop("minScore", min_score)
|
|
- super().__init__(model_name, cache_dir, **model_kwargs)
|
|
|
|
-
|
|
|
|
- def _download(self) -> None:
|
|
|
|
- zip_file = self.cache_dir / f"{self.model_name}.zip"
|
|
|
|
- download_file(f"{BASE_REPO_URL}/{self.model_name}.zip", zip_file)
|
|
|
|
- with zipfile.ZipFile(zip_file, "r") as zip:
|
|
|
|
- members = zip.namelist()
|
|
|
|
- det_file = next(model for model in members if model.startswith("det_"))
|
|
|
|
- rec_file = next(model for model in members if model.startswith("w600k_"))
|
|
|
|
- zip.extractall(self.cache_dir, members=[det_file, rec_file])
|
|
|
|
- zip_file.unlink()
|
|
|
|
|
|
+ super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
|
|
|
|
|
|
def _load(self) -> None:
|
|
def _load(self) -> None:
|
|
- try:
|
|
|
|
- det_file = next(self.cache_dir.glob("det_*.onnx"))
|
|
|
|
- rec_file = next(self.cache_dir.glob("w600k_*.onnx"))
|
|
|
|
- except StopIteration:
|
|
|
|
- raise FileNotFoundError("Facial recognition models not found in cache directory")
|
|
|
|
-
|
|
|
|
self.det_model = RetinaFace(
|
|
self.det_model = RetinaFace(
|
|
session=ort.InferenceSession(
|
|
session=ort.InferenceSession(
|
|
- det_file.as_posix(),
|
|
|
|
|
|
+ self.det_file.as_posix(),
|
|
sess_options=self.sess_options,
|
|
sess_options=self.sess_options,
|
|
providers=self.providers,
|
|
providers=self.providers,
|
|
provider_options=self.provider_options,
|
|
provider_options=self.provider_options,
|
|
),
|
|
),
|
|
)
|
|
)
|
|
self.rec_model = ArcFaceONNX(
|
|
self.rec_model = ArcFaceONNX(
|
|
- rec_file.as_posix(),
|
|
|
|
|
|
+ self.rec_file.as_posix(),
|
|
session=ort.InferenceSession(
|
|
session=ort.InferenceSession(
|
|
- rec_file.as_posix(),
|
|
|
|
|
|
+ self.rec_file.as_posix(),
|
|
sess_options=self.sess_options,
|
|
sess_options=self.sess_options,
|
|
providers=self.providers,
|
|
providers=self.providers,
|
|
provider_options=self.provider_options,
|
|
provider_options=self.provider_options,
|
|
@@ -103,7 +86,15 @@ class FaceRecognizer(InferenceModel):
|
|
|
|
|
|
@property
|
|
@property
|
|
def cached(self) -> bool:
|
|
def cached(self) -> bool:
|
|
- return self.cache_dir.is_dir() and any(self.cache_dir.glob("*.onnx"))
|
|
|
|
|
|
+ return self.det_file.is_file() and self.rec_file.is_file()
|
|
|
|
+
|
|
|
|
+ @property
|
|
|
|
+ def det_file(self) -> Path:
|
|
|
|
+ return self.cache_dir / "detection" / "model.onnx"
|
|
|
|
+
|
|
|
|
+ @property
|
|
|
|
+ def rec_file(self) -> Path:
|
|
|
|
+ return self.cache_dir / "recognition" / "model.onnx"
|
|
|
|
|
|
def configure(self, **model_kwargs: Any) -> None:
|
|
def configure(self, **model_kwargs: Any) -> None:
|
|
self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)
|
|
self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)
|