feat(ml)!: switch image classification and CLIP models to ONNX (#3809)
This commit is contained in:
parent
8211afb726
commit
165b91b068
14 changed files with 1617 additions and 507 deletions
1
.github/workflows/test.yml
vendored
1
.github/workflows/test.yml
vendored
|
@ -171,6 +171,7 @@ jobs:
|
|||
- name: Install dependencies
|
||||
run: |
|
||||
poetry install --with dev
|
||||
poetry run pip install --no-deps -r requirements.txt
|
||||
- name: Lint with ruff
|
||||
run: |
|
||||
poetry run ruff check --format=github app
|
||||
|
|
|
@ -10,8 +10,9 @@ RUN poetry config installer.max-workers 10 && \
|
|||
RUN python -m venv /opt/venv
|
||||
ENV VIRTUAL_ENV="/opt/venv" PATH="/opt/venv/bin:${PATH}"
|
||||
|
||||
COPY poetry.lock pyproject.toml ./
|
||||
COPY poetry.lock pyproject.toml requirements.txt ./
|
||||
RUN poetry install --sync --no-interaction --no-ansi --no-root --only main
|
||||
RUN pip install --no-deps -r requirements.txt
|
||||
|
||||
FROM python:3.11.4-slim-bullseye@sha256:91d194f58f50594cda71dcd2e8fdefd90e7ecc57d07823813b67c8521e565dcd
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import BaseSettings
|
||||
|
@ -8,8 +9,8 @@ from .schemas import ModelType
|
|||
class Settings(BaseSettings):
|
||||
cache_folder: str = "/cache"
|
||||
classification_model: str = "microsoft/resnet-50"
|
||||
clip_image_model: str = "clip-ViT-B-32"
|
||||
clip_text_model: str = "clip-ViT-B-32"
|
||||
clip_image_model: str = "ViT-B-32::openai"
|
||||
clip_text_model: str = "ViT-B-32::openai"
|
||||
facial_recognition_model: str = "buffalo_l"
|
||||
min_tag_score: float = 0.9
|
||||
eager_startup: bool = False
|
||||
|
@ -19,14 +20,20 @@ class Settings(BaseSettings):
|
|||
workers: int = 1
|
||||
min_face_score: float = 0.7
|
||||
test_full: bool = False
|
||||
request_threads: int = os.cpu_count() or 4
|
||||
model_inter_op_threads: int = 1
|
||||
model_intra_op_threads: int = 2
|
||||
|
||||
class Config:
|
||||
env_prefix = "MACHINE_LEARNING_"
|
||||
case_sensitive = False
|
||||
|
||||
|
||||
_clean_name = str.maketrans(":\\/", "___", ".")
|
||||
|
||||
|
||||
def get_cache_dir(model_name: str, model_type: ModelType) -> Path:
|
||||
return Path(settings.cache_folder, model_type.value, model_name)
|
||||
return Path(settings.cache_folder) / model_type.value / model_name.translate(_clean_name)
|
||||
|
||||
|
||||
settings = Settings()
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import asyncio
|
||||
import os
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from io import BytesIO
|
||||
from typing import Any
|
||||
|
||||
|
@ -8,6 +10,8 @@ import uvicorn
|
|||
from fastapi import Body, Depends, FastAPI
|
||||
from PIL import Image
|
||||
|
||||
from app.models.base import InferenceModel
|
||||
|
||||
from .config import settings
|
||||
from .models.cache import ModelCache
|
||||
from .schemas import (
|
||||
|
@ -25,19 +29,21 @@ app = FastAPI()
|
|||
|
||||
def init_state() -> None:
|
||||
app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
|
||||
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
|
||||
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads)
|
||||
|
||||
|
||||
async def load_models() -> None:
|
||||
models = [
|
||||
(settings.classification_model, ModelType.IMAGE_CLASSIFICATION),
|
||||
(settings.clip_image_model, ModelType.CLIP),
|
||||
(settings.clip_text_model, ModelType.CLIP),
|
||||
(settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION),
|
||||
models: list[tuple[str, ModelType, dict[str, Any]]] = [
|
||||
(settings.classification_model, ModelType.IMAGE_CLASSIFICATION, {}),
|
||||
(settings.clip_image_model, ModelType.CLIP, {"mode": "vision"}),
|
||||
(settings.clip_text_model, ModelType.CLIP, {"mode": "text"}),
|
||||
(settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION, {}),
|
||||
]
|
||||
|
||||
# Get all models
|
||||
for model_name, model_type in models:
|
||||
await app.state.model_cache.get(model_name, model_type, eager=settings.eager_startup)
|
||||
for model_name, model_type, model_kwargs in models:
|
||||
await app.state.model_cache.get(model_name, model_type, eager=settings.eager_startup, **model_kwargs)
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
|
@ -46,11 +52,16 @@ async def startup_event() -> None:
|
|||
await load_models()
|
||||
|
||||
|
||||
@app.on_event("shutdown")
|
||||
async def shutdown_event() -> None:
|
||||
app.state.thread_pool.shutdown()
|
||||
|
||||
|
||||
def dep_pil_image(byte_image: bytes = Body(...)) -> Image.Image:
|
||||
return Image.open(BytesIO(byte_image))
|
||||
|
||||
|
||||
def dep_cv_image(byte_image: bytes = Body(...)) -> cv2.Mat:
|
||||
def dep_cv_image(byte_image: bytes = Body(...)) -> np.ndarray[int, np.dtype[Any]]:
|
||||
byte_image_np = np.frombuffer(byte_image, np.uint8)
|
||||
return cv2.imdecode(byte_image_np, cv2.IMREAD_COLOR)
|
||||
|
||||
|
@ -74,7 +85,7 @@ async def image_classification(
|
|||
image: Image.Image = Depends(dep_pil_image),
|
||||
) -> list[str]:
|
||||
model = await app.state.model_cache.get(settings.classification_model, ModelType.IMAGE_CLASSIFICATION)
|
||||
labels = model.predict(image)
|
||||
labels = await predict(model, image)
|
||||
return labels
|
||||
|
||||
|
||||
|
@ -86,8 +97,8 @@ async def image_classification(
|
|||
async def clip_encode_image(
|
||||
image: Image.Image = Depends(dep_pil_image),
|
||||
) -> list[float]:
|
||||
model = await app.state.model_cache.get(settings.clip_image_model, ModelType.CLIP)
|
||||
embedding = model.predict(image)
|
||||
model = await app.state.model_cache.get(settings.clip_image_model, ModelType.CLIP, mode="vision")
|
||||
embedding = await predict(model, image)
|
||||
return embedding
|
||||
|
||||
|
||||
|
@ -97,8 +108,8 @@ async def clip_encode_image(
|
|||
status_code=200,
|
||||
)
|
||||
async def clip_encode_text(payload: TextModelRequest) -> list[float]:
|
||||
model = await app.state.model_cache.get(settings.clip_text_model, ModelType.CLIP)
|
||||
embedding = model.predict(payload.text)
|
||||
model = await app.state.model_cache.get(settings.clip_text_model, ModelType.CLIP, mode="text")
|
||||
embedding = await predict(model, payload.text)
|
||||
return embedding
|
||||
|
||||
|
||||
|
@ -111,10 +122,14 @@ async def facial_recognition(
|
|||
image: cv2.Mat = Depends(dep_cv_image),
|
||||
) -> list[dict[str, Any]]:
|
||||
model = await app.state.model_cache.get(settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION)
|
||||
faces = model.predict(image)
|
||||
faces = await predict(model, image)
|
||||
return faces
|
||||
|
||||
|
||||
async def predict(model: InferenceModel, inputs: Any) -> Any:
|
||||
return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
is_dev = os.getenv("NODE_ENV") == "development"
|
||||
uvicorn.run(
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
from .clip import CLIPSTEncoder
|
||||
from .clip import CLIPEncoder
|
||||
from .facial_recognition import FaceRecognizer
|
||||
from .image_classification import ImageClassifier
|
||||
|
|
|
@ -1,14 +1,17 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import pickle
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from shutil import rmtree
|
||||
from typing import Any
|
||||
from zipfile import BadZipFile
|
||||
|
||||
import onnxruntime as ort
|
||||
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf # type: ignore
|
||||
|
||||
from ..config import get_cache_dir
|
||||
from ..config import get_cache_dir, settings
|
||||
from ..schemas import ModelType
|
||||
|
||||
|
||||
|
@ -16,12 +19,31 @@ class InferenceModel(ABC):
|
|||
_model_type: ModelType
|
||||
|
||||
def __init__(
|
||||
self, model_name: str, cache_dir: Path | str | None = None, eager: bool = True, **model_kwargs: Any
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | str | None = None,
|
||||
eager: bool = True,
|
||||
inter_op_num_threads: int = settings.model_inter_op_threads,
|
||||
intra_op_num_threads: int = settings.model_intra_op_threads,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self._loaded = False
|
||||
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
|
||||
loader = self.load if eager else self.download
|
||||
|
||||
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
|
||||
# don't pre-allocate more memory than needed
|
||||
self.provider_options = model_kwargs.pop(
|
||||
"provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers)
|
||||
)
|
||||
self.sess_options = PicklableSessionOptions()
|
||||
# avoid thread contention between models
|
||||
if inter_op_num_threads > 1:
|
||||
self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
|
||||
self.sess_options.inter_op_num_threads = inter_op_num_threads
|
||||
self.sess_options.intra_op_num_threads = intra_op_num_threads
|
||||
|
||||
try:
|
||||
loader(**model_kwargs)
|
||||
except (OSError, InvalidProtobuf, BadZipFile):
|
||||
|
@ -30,6 +52,7 @@ class InferenceModel(ABC):
|
|||
|
||||
def download(self, **model_kwargs: Any) -> None:
|
||||
if not self.cached:
|
||||
print(f"Downloading {self.model_type.value.replace('_', ' ')} model. This may take a while...")
|
||||
self._download(**model_kwargs)
|
||||
|
||||
def load(self, **model_kwargs: Any) -> None:
|
||||
|
@ -39,6 +62,7 @@ class InferenceModel(ABC):
|
|||
|
||||
def predict(self, inputs: Any) -> Any:
|
||||
if not self._loaded:
|
||||
print(f"Loading {self.model_type.value.replace('_', ' ')} model...")
|
||||
self.load()
|
||||
return self._predict(inputs)
|
||||
|
||||
|
@ -89,3 +113,14 @@ class InferenceModel(ABC):
|
|||
else:
|
||||
self.cache_dir.unlink()
|
||||
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
# HF deep copies configs, so we need to make session options picklable
|
||||
class PicklableSessionOptions(ort.SessionOptions):
|
||||
def __getstate__(self) -> bytes:
|
||||
return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))])
|
||||
|
||||
def __setstate__(self, state: Any) -> None:
|
||||
self.__init__() # type: ignore
|
||||
for attr, val in pickle.loads(state):
|
||||
setattr(self, attr, val)
|
||||
|
|
|
@ -46,7 +46,7 @@ class ModelCache:
|
|||
model: The requested model.
|
||||
"""
|
||||
|
||||
key = self.cache.build_key(model_name, model_type.value)
|
||||
key = f"{model_name}{model_type.value}{model_kwargs.get('mode', '')}"
|
||||
async with OptimisticLock(self.cache, key) as lock:
|
||||
model = await self.cache.get(key)
|
||||
if model is None:
|
||||
|
|
|
@ -1,31 +1,141 @@
|
|||
from typing import Any
|
||||
import os
|
||||
import zipfile
|
||||
from typing import Any, Literal
|
||||
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
from clip_server.model.clip import BICUBIC, _convert_image_to_rgb
|
||||
from clip_server.model.clip_onnx import _MODELS, _S3_BUCKET_V2, CLIPOnnxModel, download_model
|
||||
from clip_server.model.pretrained_models import _VISUAL_MODEL_IMAGE_SIZE
|
||||
from clip_server.model.tokenization import Tokenizer
|
||||
from PIL.Image import Image
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from sentence_transformers.util import snapshot_download
|
||||
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
||||
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
_ST_TO_JINA_MODEL_NAME = {
|
||||
"clip-ViT-B-16": "ViT-B-16::openai",
|
||||
"clip-ViT-B-32": "ViT-B-32::openai",
|
||||
"clip-ViT-B-32-multilingual-v1": "M-CLIP/XLM-Roberta-Large-Vit-B-32",
|
||||
"clip-ViT-L-14": "ViT-L-14::openai",
|
||||
}
|
||||
|
||||
class CLIPSTEncoder(InferenceModel):
|
||||
|
||||
class CLIPEncoder(InferenceModel):
|
||||
_model_type = ModelType.CLIP
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: str | None = None,
|
||||
mode: Literal["text", "vision"] | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
if mode is not None and mode not in ("text", "vision"):
|
||||
raise ValueError(f"Mode must be 'text', 'vision', or omitted; got '{mode}'")
|
||||
if "vit-b" not in model_name.lower():
|
||||
raise ValueError(f"Only ViT-B models are currently supported; got '{model_name}'")
|
||||
self.mode = mode
|
||||
jina_model_name = self._get_jina_model_name(model_name)
|
||||
super().__init__(jina_model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
repo_id = self.model_name if "/" in self.model_name else f"sentence-transformers/{self.model_name}"
|
||||
snapshot_download(
|
||||
cache_dir=self.cache_dir,
|
||||
repo_id=repo_id,
|
||||
library_name="sentence-transformers",
|
||||
ignore_files=["flax_model.msgpack", "rust_model.ot", "tf_model.h5"],
|
||||
)
|
||||
models: tuple[tuple[str, str], tuple[str, str]] = _MODELS[self.model_name]
|
||||
text_onnx_path = self.cache_dir / "textual.onnx"
|
||||
vision_onnx_path = self.cache_dir / "visual.onnx"
|
||||
|
||||
if not text_onnx_path.is_file():
|
||||
self._download_model(*models[0])
|
||||
|
||||
if not vision_onnx_path.is_file():
|
||||
self._download_model(*models[1])
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
self.model = SentenceTransformer(
|
||||
self.model_name,
|
||||
cache_folder=self.cache_dir.as_posix(),
|
||||
**model_kwargs,
|
||||
)
|
||||
if self.mode == "text" or self.mode is None:
|
||||
self.text_model = ort.InferenceSession(
|
||||
self.cache_dir / "textual.onnx",
|
||||
sess_options=self.sess_options,
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
)
|
||||
self.text_outputs = [output.name for output in self.text_model.get_outputs()]
|
||||
self.tokenizer = Tokenizer(self.model_name)
|
||||
|
||||
if self.mode == "vision" or self.mode is None:
|
||||
self.vision_model = ort.InferenceSession(
|
||||
self.cache_dir / "visual.onnx",
|
||||
sess_options=self.sess_options,
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
)
|
||||
self.vision_outputs = [output.name for output in self.vision_model.get_outputs()]
|
||||
|
||||
image_size = _VISUAL_MODEL_IMAGE_SIZE[CLIPOnnxModel.get_model_name(self.model_name)]
|
||||
self.transform = _transform_pil_image(image_size)
|
||||
|
||||
def _predict(self, image_or_text: Image | str) -> list[float]:
|
||||
return self.model.encode(image_or_text).tolist()
|
||||
match image_or_text:
|
||||
case Image():
|
||||
if self.mode == "text":
|
||||
raise TypeError("Cannot encode image as text-only model")
|
||||
pixel_values = self.transform(image_or_text)
|
||||
assert isinstance(pixel_values, torch.Tensor)
|
||||
pixel_values = torch.unsqueeze(pixel_values, 0).numpy()
|
||||
outputs = self.vision_model.run(self.vision_outputs, {"pixel_values": pixel_values})
|
||||
case str():
|
||||
if self.mode == "vision":
|
||||
raise TypeError("Cannot encode text as vision-only model")
|
||||
text_inputs: dict[str, torch.Tensor] = self.tokenizer(image_or_text)
|
||||
inputs = {
|
||||
"input_ids": text_inputs["input_ids"].int().numpy(),
|
||||
"attention_mask": text_inputs["attention_mask"].int().numpy(),
|
||||
}
|
||||
outputs = self.text_model.run(self.text_outputs, inputs)
|
||||
case _:
|
||||
raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
|
||||
|
||||
return outputs[0][0].tolist()
|
||||
|
||||
def _get_jina_model_name(self, model_name: str) -> str:
|
||||
if model_name in _MODELS:
|
||||
return model_name
|
||||
elif model_name in _ST_TO_JINA_MODEL_NAME:
|
||||
print(
|
||||
(f"Warning: Sentence-Transformer model names such as '{model_name}' are no longer supported."),
|
||||
(f"Using '{_ST_TO_JINA_MODEL_NAME[model_name]}' instead as it is the best match for '{model_name}'."),
|
||||
)
|
||||
return _ST_TO_JINA_MODEL_NAME[model_name]
|
||||
else:
|
||||
raise ValueError(f"Unknown model name {model_name}.")
|
||||
|
||||
def _download_model(self, model_name: str, model_md5: str) -> bool:
|
||||
# downloading logic is adapted from clip-server's CLIPOnnxModel class
|
||||
download_model(
|
||||
url=_S3_BUCKET_V2 + model_name,
|
||||
target_folder=self.cache_dir.as_posix(),
|
||||
md5sum=model_md5,
|
||||
with_resume=True,
|
||||
)
|
||||
file = self.cache_dir / model_name.split("/")[1]
|
||||
if file.suffix == ".zip":
|
||||
with zipfile.ZipFile(file, "r") as zip_ref:
|
||||
zip_ref.extractall(self.cache_dir)
|
||||
os.remove(file)
|
||||
return True
|
||||
|
||||
|
||||
# same as `_transform_blob` without `_blob2image`
|
||||
def _transform_pil_image(n_px: int) -> Compose:
|
||||
return Compose(
|
||||
[
|
||||
Resize(n_px, interpolation=BICUBIC),
|
||||
CenterCrop(n_px),
|
||||
_convert_image_to_rgb,
|
||||
ToTensor(),
|
||||
Normalize(
|
||||
(0.48145466, 0.4578275, 0.40821073),
|
||||
(0.26862954, 0.26130258, 0.27577711),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
|
|
@ -4,6 +4,7 @@ from typing import Any
|
|||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
from insightface.model_zoo import ArcFaceONNX, RetinaFace
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from insightface.utils.storage import BASE_REPO_URL, download_file
|
||||
|
@ -42,15 +43,31 @@ class FaceRecognizer(InferenceModel):
|
|||
rec_file = next(self.cache_dir.glob("w600k_*.onnx"))
|
||||
except StopIteration:
|
||||
raise FileNotFoundError("Facial recognition models not found in cache directory")
|
||||
self.det_model = RetinaFace(det_file.as_posix())
|
||||
self.rec_model = ArcFaceONNX(rec_file.as_posix())
|
||||
|
||||
self.det_model = RetinaFace(
|
||||
session=ort.InferenceSession(
|
||||
det_file.as_posix(),
|
||||
sess_options=self.sess_options,
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
),
|
||||
)
|
||||
self.rec_model = ArcFaceONNX(
|
||||
rec_file.as_posix(),
|
||||
session=ort.InferenceSession(
|
||||
rec_file.as_posix(),
|
||||
sess_options=self.sess_options,
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
),
|
||||
)
|
||||
|
||||
self.det_model.prepare(
|
||||
ctx_id=-1,
|
||||
ctx_id=0,
|
||||
det_thresh=self.min_score,
|
||||
input_size=(640, 640),
|
||||
)
|
||||
self.rec_model.prepare(ctx_id=-1)
|
||||
self.rec_model.prepare(ctx_id=0)
|
||||
|
||||
def _predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
|
||||
bboxes, kpss = self.det_model.detect(image)
|
||||
|
|
|
@ -2,8 +2,10 @@ from pathlib import Path
|
|||
from typing import Any
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from optimum.onnxruntime import ORTModelForImageClassification
|
||||
from optimum.pipelines import pipeline
|
||||
from PIL.Image import Image
|
||||
from transformers.pipelines import pipeline
|
||||
from transformers import AutoImageProcessor
|
||||
|
||||
from ..config import settings
|
||||
from ..schemas import ModelType
|
||||
|
@ -25,15 +27,34 @@ class ImageClassifier(InferenceModel):
|
|||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
snapshot_download(
|
||||
cache_dir=self.cache_dir, repo_id=self.model_name, allow_patterns=["*.bin", "*.json", "*.txt"]
|
||||
cache_dir=self.cache_dir,
|
||||
repo_id=self.model_name,
|
||||
allow_patterns=["*.bin", "*.json", "*.txt"],
|
||||
local_dir=self.cache_dir,
|
||||
local_dir_use_symlinks=True,
|
||||
)
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
self.model = pipeline(
|
||||
self.model_type.value,
|
||||
self.model_name,
|
||||
model_kwargs={"cache_dir": self.cache_dir, **model_kwargs},
|
||||
)
|
||||
processor = AutoImageProcessor.from_pretrained(self.cache_dir)
|
||||
model_kwargs |= {
|
||||
"cache_dir": self.cache_dir,
|
||||
"provider": self.providers[0],
|
||||
"provider_options": self.provider_options[0],
|
||||
"session_options": self.sess_options,
|
||||
}
|
||||
model_path = self.cache_dir / "model.onnx"
|
||||
|
||||
if model_path.exists():
|
||||
model = ORTModelForImageClassification.from_pretrained(self.cache_dir, **model_kwargs)
|
||||
self.model = pipeline(self.model_type.value, model, feature_extractor=processor)
|
||||
else:
|
||||
self.sess_options.optimized_model_filepath = model_path.as_posix()
|
||||
self.model = pipeline(
|
||||
self.model_type.value,
|
||||
self.model_name,
|
||||
model_kwargs=model_kwargs,
|
||||
feature_extractor=processor,
|
||||
)
|
||||
|
||||
def _predict(self, image: Image) -> list[str]:
|
||||
predictions: list[dict[str, Any]] = self.model(image) # type: ignore
|
||||
|
|
|
@ -1,17 +1,20 @@
|
|||
import pickle
|
||||
from io import BytesIO
|
||||
from typing import TypeAlias
|
||||
from unittest import mock
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import pytest
|
||||
from fastapi.testclient import TestClient
|
||||
from PIL import Image
|
||||
from pytest_mock import MockerFixture
|
||||
|
||||
from .config import settings
|
||||
from .models.base import PicklableSessionOptions
|
||||
from .models.cache import ModelCache
|
||||
from .models.clip import CLIPSTEncoder
|
||||
from .models.clip import CLIPEncoder
|
||||
from .models.facial_recognition import FaceRecognizer
|
||||
from .models.image_classification import ImageClassifier
|
||||
from .schemas import ModelType
|
||||
|
@ -72,45 +75,47 @@ class TestCLIP:
|
|||
embedding = np.random.rand(512).astype(np.float32)
|
||||
|
||||
def test_eager_init(self, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(CLIPSTEncoder, "download")
|
||||
mock_load = mocker.patch.object(CLIPSTEncoder, "load")
|
||||
clip_model = CLIPSTEncoder("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
|
||||
mocker.patch.object(CLIPEncoder, "download")
|
||||
mock_load = mocker.patch.object(CLIPEncoder, "load")
|
||||
clip_model = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", eager=True, test_arg="test_arg")
|
||||
|
||||
assert clip_model.model_name == "test_model_name"
|
||||
assert clip_model.model_name == "ViT-B-32::openai"
|
||||
mock_load.assert_called_once_with(test_arg="test_arg")
|
||||
|
||||
def test_lazy_init(self, mocker: MockerFixture) -> None:
|
||||
mock_download = mocker.patch.object(CLIPSTEncoder, "download")
|
||||
mock_load = mocker.patch.object(CLIPSTEncoder, "load")
|
||||
clip_model = CLIPSTEncoder("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
|
||||
mock_download = mocker.patch.object(CLIPEncoder, "download")
|
||||
mock_load = mocker.patch.object(CLIPEncoder, "load")
|
||||
clip_model = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", eager=False, test_arg="test_arg")
|
||||
|
||||
assert clip_model.model_name == "test_model_name"
|
||||
assert clip_model.model_name == "ViT-B-32::openai"
|
||||
mock_download.assert_called_once_with(test_arg="test_arg")
|
||||
mock_load.assert_not_called()
|
||||
|
||||
def test_basic_image(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(CLIPSTEncoder, "load")
|
||||
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
|
||||
clip_encoder.model = mock.Mock()
|
||||
clip_encoder.model.encode.return_value = self.embedding
|
||||
mocker.patch.object(CLIPEncoder, "download")
|
||||
mocked = mocker.patch("app.models.clip.ort.InferenceSession", autospec=True)
|
||||
mocked.return_value.run.return_value = [[self.embedding]]
|
||||
clip_encoder = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="vision")
|
||||
assert clip_encoder.mode == "vision"
|
||||
embedding = clip_encoder.predict(pil_image)
|
||||
|
||||
assert isinstance(embedding, list)
|
||||
assert len(embedding) == 512
|
||||
assert all([isinstance(num, float) for num in embedding])
|
||||
clip_encoder.model.encode.assert_called_once()
|
||||
clip_encoder.vision_model.run.assert_called_once()
|
||||
|
||||
def test_basic_text(self, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(CLIPSTEncoder, "load")
|
||||
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
|
||||
clip_encoder.model = mock.Mock()
|
||||
clip_encoder.model.encode.return_value = self.embedding
|
||||
mocker.patch.object(CLIPEncoder, "download")
|
||||
mocked = mocker.patch("app.models.clip.ort.InferenceSession", autospec=True)
|
||||
mocked.return_value.run.return_value = [[self.embedding]]
|
||||
clip_encoder = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="text")
|
||||
assert clip_encoder.mode == "text"
|
||||
embedding = clip_encoder.predict("test search query")
|
||||
|
||||
assert isinstance(embedding, list)
|
||||
assert len(embedding) == 512
|
||||
assert all([isinstance(num, float) for num in embedding])
|
||||
clip_encoder.model.encode.assert_called_once()
|
||||
clip_encoder.text_model.run.assert_called_once()
|
||||
|
||||
|
||||
class TestFaceRecognition:
|
||||
|
@ -254,3 +259,13 @@ class TestEndpoints:
|
|||
headers=headers,
|
||||
)
|
||||
assert response.status_code == 200
|
||||
|
||||
|
||||
def test_sess_options() -> None:
|
||||
sess_options = PicklableSessionOptions()
|
||||
sess_options.intra_op_num_threads = 1
|
||||
sess_options.inter_op_num_threads = 1
|
||||
pickled = pickle.dumps(sess_options)
|
||||
unpickled = pickle.loads(pickled)
|
||||
assert unpickled.intra_op_num_threads == 1
|
||||
assert unpickled.inter_op_num_threads == 1
|
||||
|
|
1739
machine-learning/poetry.lock
generated
1739
machine-learning/poetry.lock
generated
File diff suppressed because it is too large
Load diff
|
@ -13,7 +13,6 @@ torch = [
|
|||
{markers = "platform_machine == 'amd64' or platform_machine == 'x86_64'", version = "=2.0.1", source = "pytorch-cpu"}
|
||||
]
|
||||
transformers = "^4.29.2"
|
||||
sentence-transformers = "^2.2.2"
|
||||
onnxruntime = "^1.15.0"
|
||||
insightface = "^0.7.3"
|
||||
opencv-python-headless = "^4.7.0.72"
|
||||
|
@ -22,6 +21,15 @@ fastapi = "^0.95.2"
|
|||
uvicorn = {extras = ["standard"], version = "^0.22.0"}
|
||||
pydantic = "^1.10.8"
|
||||
aiocache = "^0.12.1"
|
||||
optimum = "^1.9.1"
|
||||
torchvision = [
|
||||
{markers = "platform_machine == 'arm64' or platform_machine == 'aarch64'", version = "=0.15.2", source = "pypi"},
|
||||
{markers = "platform_machine == 'amd64' or platform_machine == 'x86_64'", version = "=0.15.2", source = "pytorch-cpu"}
|
||||
]
|
||||
rich = "^13.4.2"
|
||||
ftfy = "^6.1.1"
|
||||
setuptools = "^68.0.0"
|
||||
open-clip-torch = "^2.20.0"
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
mypy = "^1.3.0"
|
||||
|
@ -62,13 +70,20 @@ warn_untyped_fields = true
|
|||
[[tool.mypy.overrides]]
|
||||
module = [
|
||||
"huggingface_hub",
|
||||
"transformers.pipelines",
|
||||
"transformers",
|
||||
"cv2",
|
||||
"insightface.model_zoo",
|
||||
"insightface.utils.face_align",
|
||||
"insightface.utils.storage",
|
||||
"sentence_transformers",
|
||||
"sentence_transformers.util",
|
||||
"onnxruntime",
|
||||
"optimum",
|
||||
"optimum.pipelines",
|
||||
"optimum.onnxruntime",
|
||||
"clip_server.model.clip",
|
||||
"clip_server.model.clip_onnx",
|
||||
"clip_server.model.pretrained_models",
|
||||
"clip_server.model.tokenization",
|
||||
"torchvision.transforms",
|
||||
"aiocache.backends.memory",
|
||||
"aiocache.lock",
|
||||
"aiocache.plugins"
|
||||
|
|
2
machine-learning/requirements.txt
Normal file
2
machine-learning/requirements.txt
Normal file
|
@ -0,0 +1,2 @@
|
|||
# requirements to be installed with `--no-deps` flag
|
||||
clip-server==0.8.*
|
Loading…
Reference in a new issue