added faiss
This commit is contained in:
parent
0a9b632e48
commit
07c4e039b5
1 changed files with 60 additions and 2 deletions
|
@ -1,11 +1,13 @@
|
|||
import asyncio
|
||||
import threading
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import numpy as np
|
||||
from typing import Any
|
||||
from zipfile import BadZipFile
|
||||
|
||||
import faiss
|
||||
import orjson
|
||||
from fastapi import FastAPI, Form, HTTPException, UploadFile
|
||||
from fastapi import FastAPI, Form, HTTPException, UploadFile, Depends
|
||||
from fastapi.responses import ORJSONResponse
|
||||
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile # type: ignore
|
||||
from starlette.formparsers import MultiPartParser
|
||||
|
@ -22,6 +24,18 @@ from .schemas import (
|
|||
|
||||
MultiPartParser.max_file_size = 2**24 # spools to disk if payload is 16 MiB or larger
|
||||
app = FastAPI()
|
||||
vector_stores: dict[str, faiss.IndexIDMap2] = {}
|
||||
|
||||
|
||||
def validate_embeddings(embeddings: list[float] | np.ndarray[int, np.dtype[Any]]) -> np.ndarray[int, np.dtype[Any]]:
|
||||
embeddings = np.array(embeddings)
|
||||
if len(embeddings.shape) == 1:
|
||||
embeddings = np.expand_dims(embeddings, 0)
|
||||
elif len(embeddings.shape) != 2:
|
||||
raise HTTPException(400, f"Expected one or two axes for embeddings; got {len(embeddings.shape)}")
|
||||
if embeddings.shape[1] < 10:
|
||||
raise HTTPException(400, f"Dimension size must be at least 10; got {embeddings.shape[1]}")
|
||||
return embeddings
|
||||
|
||||
|
||||
def init_state() -> None:
|
||||
|
@ -34,7 +48,8 @@ def init_state() -> None:
|
|||
)
|
||||
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
|
||||
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None
|
||||
app.state.locks = {model_type: threading.Lock() for model_type in ModelType}
|
||||
app.state.model_locks = {model_type: threading.Lock() for model_type in ModelType}
|
||||
app.state.index_lock = threading.Lock()
|
||||
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
|
||||
|
||||
|
||||
|
@ -78,6 +93,49 @@ async def predict(
|
|||
return ORJSONResponse(outputs)
|
||||
|
||||
|
||||
@app.post("/index/{index_name}/search")
|
||||
async def search(
|
||||
index_name: str, embeddings: np.ndarray[int, np.dtype[np.float32]] = Depends(validate_embeddings), k: int = 10
|
||||
) -> None:
|
||||
if index_name not in vector_stores or vector_stores[index_name].d != embeddings.shape[1]:
|
||||
raise HTTPException(404, f"Index '{index_name}' not found")
|
||||
return vector_stores[index_name].search(embeddings, k)[1] # type: ignore
|
||||
|
||||
|
||||
@app.patch("/index/{index_name}/add")
|
||||
async def add(
|
||||
index_name: str,
|
||||
embedding_ids: list[str],
|
||||
embeddings: np.ndarray[int, np.dtype[np.float32]] = Depends(validate_embeddings),
|
||||
) -> None:
|
||||
if index_name not in vector_stores or vector_stores[index_name].d != embeddings.shape[1]:
|
||||
await create(index_name, embedding_ids, embeddings)
|
||||
else:
|
||||
vector_stores[index_name].add_with_ids(embeddings, embedding_ids) # type: ignore
|
||||
|
||||
|
||||
@app.post("/index/{index_name}/create")
|
||||
async def create(
|
||||
index_name: str,
|
||||
embedding_ids: list[str],
|
||||
embeddings: np.ndarray[int, np.dtype[np.float32]] = Depends(validate_embeddings),
|
||||
) -> None:
|
||||
if embeddings.shape[0] != len(embedding_ids):
|
||||
raise HTTPException(400, "Number of embedding IDs must match number of embeddings")
|
||||
if index_name in vector_stores:
|
||||
log.warn(f"Index '{index_name}' already exists. Overwriting.")
|
||||
|
||||
hnsw_index = faiss.IndexHNSWFlat(embeddings.shape[1])
|
||||
mapped_index = faiss.IndexIDMap2(hnsw_index)
|
||||
|
||||
def _create() -> faiss.IndexIDMap2:
|
||||
with app.state.index_lock:
|
||||
mapped_index.add_with_ids(embeddings, embedding_ids) # type: ignore
|
||||
return mapped_index
|
||||
|
||||
vector_stores[index_name] = await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, _create)
|
||||
|
||||
|
||||
async def run(model: InferenceModel, inputs: Any) -> Any:
|
||||
if app.state.thread_pool is None:
|
||||
return model.predict(inputs)
|
||||
|
|
Loading…
Add table
Reference in a new issue