[mob][photos] Move listeners inside init
This commit is contained in:
parent
678efd1e8b
commit
ffc9eecbd1
2 changed files with 156 additions and 155 deletions
|
@ -242,8 +242,6 @@ Future<void> _init(bool isBackground, {String via = ''}) async {
|
|||
// unawaited(ObjectDetectionService.instance.init());
|
||||
if (flagService.faceSearchEnabled) {
|
||||
unawaited(FaceMlService.instance.init());
|
||||
FaceMlService.instance.listenIndexOnDiffSync();
|
||||
FaceMlService.instance.listenOnPeopleChangedSync();
|
||||
} else {
|
||||
if (LocalSettings.instance.isFaceIndexingEnabled) {
|
||||
unawaited(LocalSettings.instance.toggleFaceIndexing());
|
||||
|
|
|
@ -158,6 +158,9 @@ class FaceMlService {
|
|||
} else {
|
||||
unawaited(indexAndClusterAll());
|
||||
}
|
||||
|
||||
_listenIndexOnDiffSync();
|
||||
_listenOnPeopleChangedSync();
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -165,13 +168,13 @@ class FaceMlService {
|
|||
OrtEnv.instance.init();
|
||||
}
|
||||
|
||||
void listenIndexOnDiffSync() {
|
||||
void _listenIndexOnDiffSync() {
|
||||
Bus.instance.on<DiffSyncCompleteEvent>().listen((event) async {
|
||||
unawaited(sync());
|
||||
});
|
||||
}
|
||||
|
||||
void listenOnPeopleChangedSync() {
|
||||
void _listenOnPeopleChangedSync() {
|
||||
Bus.instance.on<PeopleChangedEvent>().listen((event) {
|
||||
_shouldSyncPeople = true;
|
||||
});
|
||||
|
@ -372,157 +375,6 @@ class FaceMlService {
|
|||
}
|
||||
}
|
||||
|
||||
Future<void> clusterAllImages({
|
||||
double minFaceScore = kMinimumQualityFaceScore,
|
||||
bool clusterInBuckets = true,
|
||||
}) async {
|
||||
if (_cannotRunMLFunction()) return;
|
||||
|
||||
_logger.info("`clusterAllImages()` called");
|
||||
_isIndexingOrClusteringRunning = true;
|
||||
final clusterAllImagesTime = DateTime.now();
|
||||
|
||||
try {
|
||||
// Get a sense of the total number of faces in the database
|
||||
final int totalFaces = await FaceMLDataDB.instance
|
||||
.getTotalFaceCount(minFaceScore: minFaceScore);
|
||||
final fileIDToCreationTime =
|
||||
await FilesDB.instance.getFileIDToCreationTime();
|
||||
final startEmbeddingFetch = DateTime.now();
|
||||
// read all embeddings
|
||||
final result = await FaceMLDataDB.instance.getFaceInfoForClustering(
|
||||
minScore: minFaceScore,
|
||||
maxFaces: totalFaces,
|
||||
);
|
||||
final Set<int> missingFileIDs = {};
|
||||
final allFaceInfoForClustering = <FaceInfoForClustering>[];
|
||||
for (final faceInfo in result) {
|
||||
if (!fileIDToCreationTime.containsKey(faceInfo.fileID)) {
|
||||
missingFileIDs.add(faceInfo.fileID);
|
||||
} else {
|
||||
allFaceInfoForClustering.add(faceInfo);
|
||||
}
|
||||
}
|
||||
// sort the embeddings based on file creation time, oldest first
|
||||
allFaceInfoForClustering.sort((a, b) {
|
||||
return fileIDToCreationTime[a.fileID]!
|
||||
.compareTo(fileIDToCreationTime[b.fileID]!);
|
||||
});
|
||||
_logger.info(
|
||||
'Getting and sorting embeddings took ${DateTime.now().difference(startEmbeddingFetch).inMilliseconds} ms for ${allFaceInfoForClustering.length} embeddings'
|
||||
'and ${missingFileIDs.length} missing fileIDs',
|
||||
);
|
||||
|
||||
// Get the current cluster statistics
|
||||
final Map<int, (Uint8List, int)> oldClusterSummaries =
|
||||
await FaceMLDataDB.instance.getAllClusterSummary();
|
||||
|
||||
if (clusterInBuckets) {
|
||||
const int bucketSize = 20000;
|
||||
const int offsetIncrement = 7500;
|
||||
int offset = 0;
|
||||
int bucket = 1;
|
||||
|
||||
while (true) {
|
||||
if (_shouldPauseIndexingAndClustering) {
|
||||
_logger.info(
|
||||
"MLController does not allow running ML, stopping before clustering bucket $bucket",
|
||||
);
|
||||
break;
|
||||
}
|
||||
if (offset > allFaceInfoForClustering.length - 1) {
|
||||
_logger.warning(
|
||||
'faceIdToEmbeddingBucket is empty, this should ideally not happen as it should have stopped earlier. offset: $offset, totalFaces: $totalFaces',
|
||||
);
|
||||
break;
|
||||
}
|
||||
if (offset > totalFaces) {
|
||||
_logger.warning(
|
||||
'offset > totalFaces, this should ideally not happen. offset: $offset, totalFaces: $totalFaces',
|
||||
);
|
||||
break;
|
||||
}
|
||||
|
||||
final bucketStartTime = DateTime.now();
|
||||
final faceInfoForClustering = allFaceInfoForClustering.sublist(
|
||||
offset,
|
||||
min(offset + bucketSize, allFaceInfoForClustering.length),
|
||||
);
|
||||
|
||||
final clusteringResult =
|
||||
await FaceClusteringService.instance.predictLinear(
|
||||
faceInfoForClustering.toSet(),
|
||||
fileIDToCreationTime: fileIDToCreationTime,
|
||||
offset: offset,
|
||||
oldClusterSummaries: oldClusterSummaries,
|
||||
);
|
||||
if (clusteringResult == null) {
|
||||
_logger.warning("faceIdToCluster is null");
|
||||
return;
|
||||
}
|
||||
|
||||
await FaceMLDataDB.instance
|
||||
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
|
||||
await FaceMLDataDB.instance
|
||||
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
||||
for (final faceInfo in faceInfoForClustering) {
|
||||
faceInfo.clusterId ??=
|
||||
clusteringResult.newFaceIdToCluster[faceInfo.faceID];
|
||||
}
|
||||
for (final clusterUpdate
|
||||
in clusteringResult.newClusterSummaries!.entries) {
|
||||
oldClusterSummaries[clusterUpdate.key] = clusterUpdate.value;
|
||||
}
|
||||
_logger.info(
|
||||
'Done with clustering ${offset + faceInfoForClustering.length} embeddings (${(100 * (offset + faceInfoForClustering.length) / totalFaces).toStringAsFixed(0)}%) in bucket $bucket, offset: $offset, in ${DateTime.now().difference(bucketStartTime).inSeconds} seconds',
|
||||
);
|
||||
if (offset + bucketSize >= totalFaces) {
|
||||
_logger.info('All faces clustered');
|
||||
break;
|
||||
}
|
||||
offset += offsetIncrement;
|
||||
bucket++;
|
||||
}
|
||||
} else {
|
||||
final clusterStartTime = DateTime.now();
|
||||
// Cluster the embeddings using the linear clustering algorithm, returning a map from faceID to clusterID
|
||||
final clusteringResult =
|
||||
await FaceClusteringService.instance.predictLinear(
|
||||
allFaceInfoForClustering.toSet(),
|
||||
fileIDToCreationTime: fileIDToCreationTime,
|
||||
oldClusterSummaries: oldClusterSummaries,
|
||||
);
|
||||
if (clusteringResult == null) {
|
||||
_logger.warning("faceIdToCluster is null");
|
||||
return;
|
||||
}
|
||||
final clusterDoneTime = DateTime.now();
|
||||
_logger.info(
|
||||
'done with clustering ${allFaceInfoForClustering.length} in ${clusterDoneTime.difference(clusterStartTime).inSeconds} seconds ',
|
||||
);
|
||||
|
||||
// Store the updated clusterIDs in the database
|
||||
_logger.info(
|
||||
'Updating ${clusteringResult.newFaceIdToCluster.length} FaceIDs with clusterIDs in the DB',
|
||||
);
|
||||
await FaceMLDataDB.instance
|
||||
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
|
||||
await FaceMLDataDB.instance
|
||||
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
||||
_logger.info('Done updating FaceIDs with clusterIDs in the DB, in '
|
||||
'${DateTime.now().difference(clusterDoneTime).inSeconds} seconds');
|
||||
}
|
||||
Bus.instance.fire(PeopleChangedEvent());
|
||||
_logger.info('clusterAllImages() finished, in '
|
||||
'${DateTime.now().difference(clusterAllImagesTime).inSeconds} seconds');
|
||||
} catch (e, s) {
|
||||
_logger.severe("`clusterAllImages` failed", e, s);
|
||||
} finally {
|
||||
_isIndexingOrClusteringRunning = false;
|
||||
_shouldPauseIndexingAndClustering = false;
|
||||
}
|
||||
}
|
||||
|
||||
/// Analyzes all the images in the database with the latest ml version and stores the results in the database.
|
||||
///
|
||||
/// This function first checks if the image has already been analyzed with the lastest faceMlVersion and stored in the database. If so, it skips the image.
|
||||
|
@ -699,6 +551,157 @@ class FaceMlService {
|
|||
}
|
||||
}
|
||||
|
||||
Future<void> clusterAllImages({
|
||||
double minFaceScore = kMinimumQualityFaceScore,
|
||||
bool clusterInBuckets = true,
|
||||
}) async {
|
||||
if (_cannotRunMLFunction()) return;
|
||||
|
||||
_logger.info("`clusterAllImages()` called");
|
||||
_isIndexingOrClusteringRunning = true;
|
||||
final clusterAllImagesTime = DateTime.now();
|
||||
|
||||
try {
|
||||
// Get a sense of the total number of faces in the database
|
||||
final int totalFaces = await FaceMLDataDB.instance
|
||||
.getTotalFaceCount(minFaceScore: minFaceScore);
|
||||
final fileIDToCreationTime =
|
||||
await FilesDB.instance.getFileIDToCreationTime();
|
||||
final startEmbeddingFetch = DateTime.now();
|
||||
// read all embeddings
|
||||
final result = await FaceMLDataDB.instance.getFaceInfoForClustering(
|
||||
minScore: minFaceScore,
|
||||
maxFaces: totalFaces,
|
||||
);
|
||||
final Set<int> missingFileIDs = {};
|
||||
final allFaceInfoForClustering = <FaceInfoForClustering>[];
|
||||
for (final faceInfo in result) {
|
||||
if (!fileIDToCreationTime.containsKey(faceInfo.fileID)) {
|
||||
missingFileIDs.add(faceInfo.fileID);
|
||||
} else {
|
||||
allFaceInfoForClustering.add(faceInfo);
|
||||
}
|
||||
}
|
||||
// sort the embeddings based on file creation time, oldest first
|
||||
allFaceInfoForClustering.sort((a, b) {
|
||||
return fileIDToCreationTime[a.fileID]!
|
||||
.compareTo(fileIDToCreationTime[b.fileID]!);
|
||||
});
|
||||
_logger.info(
|
||||
'Getting and sorting embeddings took ${DateTime.now().difference(startEmbeddingFetch).inMilliseconds} ms for ${allFaceInfoForClustering.length} embeddings'
|
||||
'and ${missingFileIDs.length} missing fileIDs',
|
||||
);
|
||||
|
||||
// Get the current cluster statistics
|
||||
final Map<int, (Uint8List, int)> oldClusterSummaries =
|
||||
await FaceMLDataDB.instance.getAllClusterSummary();
|
||||
|
||||
if (clusterInBuckets) {
|
||||
const int bucketSize = 20000;
|
||||
const int offsetIncrement = 7500;
|
||||
int offset = 0;
|
||||
int bucket = 1;
|
||||
|
||||
while (true) {
|
||||
if (_shouldPauseIndexingAndClustering) {
|
||||
_logger.info(
|
||||
"MLController does not allow running ML, stopping before clustering bucket $bucket",
|
||||
);
|
||||
break;
|
||||
}
|
||||
if (offset > allFaceInfoForClustering.length - 1) {
|
||||
_logger.warning(
|
||||
'faceIdToEmbeddingBucket is empty, this should ideally not happen as it should have stopped earlier. offset: $offset, totalFaces: $totalFaces',
|
||||
);
|
||||
break;
|
||||
}
|
||||
if (offset > totalFaces) {
|
||||
_logger.warning(
|
||||
'offset > totalFaces, this should ideally not happen. offset: $offset, totalFaces: $totalFaces',
|
||||
);
|
||||
break;
|
||||
}
|
||||
|
||||
final bucketStartTime = DateTime.now();
|
||||
final faceInfoForClustering = allFaceInfoForClustering.sublist(
|
||||
offset,
|
||||
min(offset + bucketSize, allFaceInfoForClustering.length),
|
||||
);
|
||||
|
||||
final clusteringResult =
|
||||
await FaceClusteringService.instance.predictLinear(
|
||||
faceInfoForClustering.toSet(),
|
||||
fileIDToCreationTime: fileIDToCreationTime,
|
||||
offset: offset,
|
||||
oldClusterSummaries: oldClusterSummaries,
|
||||
);
|
||||
if (clusteringResult == null) {
|
||||
_logger.warning("faceIdToCluster is null");
|
||||
return;
|
||||
}
|
||||
|
||||
await FaceMLDataDB.instance
|
||||
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
|
||||
await FaceMLDataDB.instance
|
||||
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
||||
for (final faceInfo in faceInfoForClustering) {
|
||||
faceInfo.clusterId ??=
|
||||
clusteringResult.newFaceIdToCluster[faceInfo.faceID];
|
||||
}
|
||||
for (final clusterUpdate
|
||||
in clusteringResult.newClusterSummaries!.entries) {
|
||||
oldClusterSummaries[clusterUpdate.key] = clusterUpdate.value;
|
||||
}
|
||||
_logger.info(
|
||||
'Done with clustering ${offset + faceInfoForClustering.length} embeddings (${(100 * (offset + faceInfoForClustering.length) / totalFaces).toStringAsFixed(0)}%) in bucket $bucket, offset: $offset, in ${DateTime.now().difference(bucketStartTime).inSeconds} seconds',
|
||||
);
|
||||
if (offset + bucketSize >= totalFaces) {
|
||||
_logger.info('All faces clustered');
|
||||
break;
|
||||
}
|
||||
offset += offsetIncrement;
|
||||
bucket++;
|
||||
}
|
||||
} else {
|
||||
final clusterStartTime = DateTime.now();
|
||||
// Cluster the embeddings using the linear clustering algorithm, returning a map from faceID to clusterID
|
||||
final clusteringResult =
|
||||
await FaceClusteringService.instance.predictLinear(
|
||||
allFaceInfoForClustering.toSet(),
|
||||
fileIDToCreationTime: fileIDToCreationTime,
|
||||
oldClusterSummaries: oldClusterSummaries,
|
||||
);
|
||||
if (clusteringResult == null) {
|
||||
_logger.warning("faceIdToCluster is null");
|
||||
return;
|
||||
}
|
||||
final clusterDoneTime = DateTime.now();
|
||||
_logger.info(
|
||||
'done with clustering ${allFaceInfoForClustering.length} in ${clusterDoneTime.difference(clusterStartTime).inSeconds} seconds ',
|
||||
);
|
||||
|
||||
// Store the updated clusterIDs in the database
|
||||
_logger.info(
|
||||
'Updating ${clusteringResult.newFaceIdToCluster.length} FaceIDs with clusterIDs in the DB',
|
||||
);
|
||||
await FaceMLDataDB.instance
|
||||
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
|
||||
await FaceMLDataDB.instance
|
||||
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
||||
_logger.info('Done updating FaceIDs with clusterIDs in the DB, in '
|
||||
'${DateTime.now().difference(clusterDoneTime).inSeconds} seconds');
|
||||
}
|
||||
Bus.instance.fire(PeopleChangedEvent());
|
||||
_logger.info('clusterAllImages() finished, in '
|
||||
'${DateTime.now().difference(clusterAllImagesTime).inSeconds} seconds');
|
||||
} catch (e, s) {
|
||||
_logger.severe("`clusterAllImages` failed", e, s);
|
||||
} finally {
|
||||
_isIndexingOrClusteringRunning = false;
|
||||
_shouldPauseIndexingAndClustering = false;
|
||||
}
|
||||
}
|
||||
|
||||
bool _shouldDiscardRemoteEmbedding(FileMl fileMl) {
|
||||
if (fileMl.faceEmbedding.version < faceMlVersion) {
|
||||
debugPrint("Discarding remote embedding for fileID ${fileMl.fileID} "
|
||||
|
|
Loading…
Add table
Reference in a new issue