Merge branch 'mobile_face' of https://github.com/ente-io/auth into mobile_face
This commit is contained in:
commit
e2ed836b16
1 changed files with 71 additions and 12 deletions
|
@ -11,6 +11,7 @@ import "package:photos/face/model/person.dart";
|
|||
import "package:photos/generated/protos/ente/common/vector.pb.dart";
|
||||
import "package:photos/models/file/file.dart";
|
||||
import 'package:photos/services/machine_learning/face_ml/face_clustering/cosine_distance.dart';
|
||||
import "package:photos/services/machine_learning/face_ml/face_ml_result.dart";
|
||||
import "package:photos/services/search_service.dart";
|
||||
|
||||
class ClusterFeedbackService {
|
||||
|
@ -241,22 +242,13 @@ class ClusterFeedbackService {
|
|||
/// 3. bool: whether the suggestion was found using the mean (true) or the median (false)
|
||||
/// 4. List<EnteFile>: the files in the cluster
|
||||
Future<List<(int, double, bool, List<EnteFile>)>> getClusterFilesForPersonID(
|
||||
Person person,
|
||||
) async {
|
||||
Person person, {
|
||||
bool extremeFilesFirst = true,
|
||||
}) async {
|
||||
_logger.info(
|
||||
'getClusterFilesForPersonID ${kDebugMode ? person.attr.name : person.remoteID}',
|
||||
);
|
||||
|
||||
// Get the suggestions for the person using only centroids
|
||||
// final Map<int, List<(int, double)>> suggestions =
|
||||
// await getSuggestionsUsingMean(person);
|
||||
// final Set<int> suggestClusterIds = {};
|
||||
// for (final List<(int, double)> suggestion in suggestions.values) {
|
||||
// for (final clusterNeighbors in suggestion) {
|
||||
// suggestClusterIds.add(clusterNeighbors.$1);
|
||||
// }
|
||||
// }
|
||||
|
||||
try {
|
||||
// Get the suggestions for the person using centroids and median
|
||||
final List<(int, double, bool)> suggestClusterIds =
|
||||
|
@ -297,6 +289,10 @@ class ClusterFeedbackService {
|
|||
}
|
||||
}
|
||||
|
||||
if (extremeFilesFirst) {
|
||||
await _sortSuggestionsOnDistanceToPerson(person, clusterIdAndFiles);
|
||||
}
|
||||
|
||||
return clusterIdAndFiles;
|
||||
} catch (e, s) {
|
||||
_logger.severe("Error in getClusterFilesForPersonID", e, s);
|
||||
|
@ -505,4 +501,67 @@ class ClusterFeedbackService {
|
|||
|
||||
return sampledEmbeddings;
|
||||
}
|
||||
|
||||
Future<void> _sortSuggestionsOnDistanceToPerson(
|
||||
Person person,
|
||||
List<(int, double, bool, List<EnteFile>)> suggestions,
|
||||
) async {
|
||||
if (suggestions.isEmpty) {
|
||||
debugPrint('No suggestions to sort');
|
||||
return;
|
||||
}
|
||||
final startTime = DateTime.now();
|
||||
final faceMlDb = FaceMLDataDB.instance;
|
||||
|
||||
// Get the cluster averages for the person's clusters and the suggestions' clusters
|
||||
final Map<int, (Uint8List, int)> clusterToSummary =
|
||||
await faceMlDb.clusterSummaryAll();
|
||||
|
||||
// Calculate the avg embedding of the person
|
||||
final personClusters = await faceMlDb.getPersonClusterIDs(person.remoteID);
|
||||
final personEmbeddingsCount = personClusters
|
||||
.map((e) => clusterToSummary[e]!.$2)
|
||||
.reduce((a, b) => a + b);
|
||||
final List<double> personAvg = List.filled(192, 0);
|
||||
for (final personClusterID in personClusters) {
|
||||
final personClusterBlob = clusterToSummary[personClusterID]!.$1;
|
||||
final personClusterAvg = EVector.fromBuffer(personClusterBlob).values;
|
||||
final clusterWeight =
|
||||
clusterToSummary[personClusterID]!.$2 / personEmbeddingsCount;
|
||||
for (int i = 0; i < personClusterAvg.length; i++) {
|
||||
personAvg[i] += personClusterAvg[i] *
|
||||
clusterWeight; // Weighted sum of the cluster averages
|
||||
}
|
||||
}
|
||||
|
||||
// Sort the suggestions based on the distance to the person
|
||||
for (final suggestion in suggestions) {
|
||||
final clusterID = suggestion.$1;
|
||||
final faceIdToEmbeddingMap = await faceMlDb.getFaceEmbeddingMapForFile(
|
||||
suggestion.$4.map((e) => e.uploadedFileID!).toList(),
|
||||
);
|
||||
final fileIdToDistanceMap = {};
|
||||
for (final entry in faceIdToEmbeddingMap.entries) {
|
||||
fileIdToDistanceMap[getFileIdFromFaceId(entry.key)] =
|
||||
cosineDistForNormVectors(
|
||||
personAvg,
|
||||
EVector.fromBuffer(entry.value).values,
|
||||
);
|
||||
}
|
||||
suggestion.$4.sort((b, a) {
|
||||
final double distanceA = fileIdToDistanceMap[a.uploadedFileID!];
|
||||
final double distanceB = fileIdToDistanceMap[b.uploadedFileID!];
|
||||
return distanceA.compareTo(distanceB);
|
||||
});
|
||||
|
||||
debugPrint(
|
||||
"[${_logger.name}] Sorted suggestions for cluster $clusterID based on distance to person: ${suggestion.$4.map((e) => fileIdToDistanceMap[e.uploadedFileID]).toList()}",
|
||||
);
|
||||
}
|
||||
|
||||
final endTime = DateTime.now();
|
||||
_logger.info(
|
||||
"Sorting suggestions based on distance to person took ${endTime.difference(startTime).inMilliseconds} ms for ${suggestions.length} suggestions",
|
||||
);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue