|
@@ -8,7 +8,6 @@ import { DetectedFace, MLSyncFileContext } from "services/ml/types";
|
|
|
import { EnteFile } from "types/file";
|
|
|
import { getRenderableImage } from "utils/file";
|
|
|
import { clamp } from "utils/image";
|
|
|
-import { DEFAULT_ML_SYNC_CONFIG } from "./machineLearningService";
|
|
|
|
|
|
class ReaderService {
|
|
|
async getImageBitmap(fileContext: MLSyncFileContext) {
|
|
@@ -29,7 +28,6 @@ class ReaderService {
|
|
|
fileContext.localFile,
|
|
|
);
|
|
|
} else if (
|
|
|
- DEFAULT_ML_SYNC_CONFIG.imageSource === "Original" &&
|
|
|
[FILE_TYPE.IMAGE, FILE_TYPE.LIVE_PHOTO].includes(
|
|
|
fileContext.enteFile.metadata.fileType,
|
|
|
)
|
|
@@ -38,13 +36,14 @@ class ReaderService {
|
|
|
fileContext.enteFile,
|
|
|
);
|
|
|
} else {
|
|
|
+ // TODO-ML(MR): We don't do it on videos, when will we ever come
|
|
|
+ // here?
|
|
|
fileContext.imageBitmap = await getThumbnailImageBitmap(
|
|
|
fileContext.enteFile,
|
|
|
);
|
|
|
}
|
|
|
|
|
|
- fileContext.newMlFile.imageSource =
|
|
|
- DEFAULT_ML_SYNC_CONFIG.imageSource;
|
|
|
+ fileContext.newMlFile.imageSource = "Original";
|
|
|
const { width, height } = fileContext.imageBitmap;
|
|
|
fileContext.newMlFile.imageDimensions = { width, height };
|
|
|
|