Setup classifier
This commit is contained in:
parent
675179c265
commit
c130021db0
1 changed files with 179 additions and 0 deletions
179
lib/services/object_detection/tflite/classifier.dart
Normal file
179
lib/services/object_detection/tflite/classifier.dart
Normal file
|
@ -0,0 +1,179 @@
|
|||
import 'dart:math';
|
||||
|
||||
import 'package:image/image.dart' as imageLib;
|
||||
import "package:logging/logging.dart";
|
||||
import 'package:photos/services/object_detection/models/predictions.dart';
|
||||
import 'package:photos/services/object_detection/models/recognition.dart';
|
||||
import "package:photos/services/object_detection/models/stats.dart";
|
||||
import "package:tflite_flutter/tflite_flutter.dart";
|
||||
import "package:tflite_flutter_helper/tflite_flutter_helper.dart";
|
||||
|
||||
/// Classifier
|
||||
class ObjectClassifier {
|
||||
final _logger = Logger("Classifier");
|
||||
|
||||
/// Instance of Interpreter
|
||||
late Interpreter _interpreter;
|
||||
|
||||
/// Labels file loaded as list
|
||||
late List<String> _labels;
|
||||
|
||||
/// Input size of image (height = width = 300)
|
||||
static const int inputSize = 300;
|
||||
|
||||
/// Result score threshold
|
||||
static const double threshold = 0.5;
|
||||
|
||||
static const String modelFileName = "detect.tflite";
|
||||
static const String labelFileName = "labelmap.txt";
|
||||
|
||||
/// [ImageProcessor] used to pre-process the image
|
||||
ImageProcessor? imageProcessor;
|
||||
|
||||
/// Padding the image to transform into square
|
||||
late int padSize;
|
||||
|
||||
/// Shapes of output tensors
|
||||
late List<List<int>> _outputShapes;
|
||||
|
||||
/// Types of output tensors
|
||||
late List<TfLiteType> _outputTypes;
|
||||
|
||||
/// Number of results to show
|
||||
static const int numResults = 10;
|
||||
|
||||
ObjectClassifier({
|
||||
Interpreter? interpreter,
|
||||
List<String>? labels,
|
||||
}) {
|
||||
loadModel(interpreter);
|
||||
loadLabels(labels);
|
||||
}
|
||||
|
||||
/// Loads interpreter from asset
|
||||
void loadModel(Interpreter? interpreter) async {
|
||||
try {
|
||||
_interpreter = interpreter ??
|
||||
await Interpreter.fromAsset(
|
||||
"models/" + modelFileName,
|
||||
options: InterpreterOptions()..threads = 4,
|
||||
);
|
||||
final outputTensors = _interpreter.getOutputTensors();
|
||||
_outputShapes = [];
|
||||
_outputTypes = [];
|
||||
outputTensors.forEach((tensor) {
|
||||
_outputShapes.add(tensor.shape);
|
||||
_outputTypes.add(tensor.type);
|
||||
});
|
||||
_logger.info("Interpreter initialized");
|
||||
} catch (e, s) {
|
||||
_logger.severe("Error while creating interpreter", e, s);
|
||||
}
|
||||
}
|
||||
|
||||
/// Loads labels from assets
|
||||
void loadLabels(List<String>? labels) async {
|
||||
try {
|
||||
_labels =
|
||||
labels ?? await FileUtil.loadLabels("assets/models/" + labelFileName);
|
||||
_logger.info("Labels initialized");
|
||||
} catch (e, s) {
|
||||
_logger.severe("Error while loading labels", e, s);
|
||||
}
|
||||
}
|
||||
|
||||
/// Pre-process the image
|
||||
TensorImage _getProcessedImage(TensorImage inputImage) {
|
||||
padSize = max(inputImage.height, inputImage.width);
|
||||
imageProcessor ??= ImageProcessorBuilder()
|
||||
.add(ResizeWithCropOrPadOp(padSize, padSize))
|
||||
.add(ResizeOp(inputSize, inputSize, ResizeMethod.BILINEAR))
|
||||
.build();
|
||||
inputImage = imageProcessor!.process(inputImage);
|
||||
return inputImage;
|
||||
}
|
||||
|
||||
/// Runs object detection on the input image
|
||||
Predictions? predict(imageLib.Image image) {
|
||||
final predictStartTime = DateTime.now().millisecondsSinceEpoch;
|
||||
|
||||
final preProcessStart = DateTime.now().millisecondsSinceEpoch;
|
||||
|
||||
// Create TensorImage from image
|
||||
TensorImage inputImage = TensorImage.fromImage(image);
|
||||
|
||||
// Pre-process TensorImage
|
||||
inputImage = _getProcessedImage(inputImage);
|
||||
|
||||
final preProcessElapsedTime =
|
||||
DateTime.now().millisecondsSinceEpoch - preProcessStart;
|
||||
|
||||
// TensorBuffers for output tensors
|
||||
final outputLocations = TensorBufferFloat(_outputShapes[0]);
|
||||
final outputClasses = TensorBufferFloat(_outputShapes[1]);
|
||||
final outputScores = TensorBufferFloat(_outputShapes[2]);
|
||||
final numLocations = TensorBufferFloat(_outputShapes[3]);
|
||||
|
||||
// Inputs object for runForMultipleInputs
|
||||
// Use [TensorImage.buffer] or [TensorBuffer.buffer] to pass by reference
|
||||
final inputs = [inputImage.buffer];
|
||||
|
||||
// Outputs map
|
||||
final outputs = {
|
||||
0: outputLocations.buffer,
|
||||
1: outputClasses.buffer,
|
||||
2: outputScores.buffer,
|
||||
3: numLocations.buffer,
|
||||
};
|
||||
|
||||
final inferenceTimeStart = DateTime.now().millisecondsSinceEpoch;
|
||||
|
||||
// run inference
|
||||
_interpreter.runForMultipleInputs(inputs, outputs);
|
||||
|
||||
final inferenceTimeElapsed =
|
||||
DateTime.now().millisecondsSinceEpoch - inferenceTimeStart;
|
||||
|
||||
// Maximum number of results to show
|
||||
final resultsCount = min(numResults, numLocations.getIntValue(0));
|
||||
|
||||
// Using labelOffset = 1 as ??? at index 0
|
||||
const labelOffset = 1;
|
||||
|
||||
final recognitions = <Recognition>[];
|
||||
|
||||
for (int i = 0; i < resultsCount; i++) {
|
||||
// Prediction score
|
||||
final score = outputScores.getDoubleValue(i);
|
||||
|
||||
// Label string
|
||||
final labelIndex = outputClasses.getIntValue(i) + labelOffset;
|
||||
final label = _labels.elementAt(labelIndex);
|
||||
|
||||
if (score > threshold) {
|
||||
recognitions.add(
|
||||
Recognition(i, label, score),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
final predictElapsedTime =
|
||||
DateTime.now().millisecondsSinceEpoch - predictStartTime;
|
||||
_logger.info(recognitions);
|
||||
return Predictions(
|
||||
recognitions,
|
||||
Stats(
|
||||
predictElapsedTime,
|
||||
predictElapsedTime,
|
||||
inferenceTimeElapsed,
|
||||
preProcessElapsedTime,
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
/// Gets the interpreter instance
|
||||
Interpreter get interpreter => _interpreter;
|
||||
|
||||
/// Gets the loaded labels
|
||||
List<String> get labels => _labels;
|
||||
}
|
Loading…
Add table
Reference in a new issue