|
@@ -124,14 +124,14 @@ export const clipImageEmbedding = async (jpegImageData: Uint8Array) => {
|
|
|
};
|
|
|
|
|
|
const clipImageEmbedding_ = async (jpegFilePath: string) => {
|
|
|
- const imageSession = await onnxImageSession();
|
|
|
+ const session = await onnxImageSession();
|
|
|
const t1 = Date.now();
|
|
|
const rgbData = await getRGBData(jpegFilePath);
|
|
|
const feeds = {
|
|
|
input: new ort.Tensor("float32", rgbData, [1, 3, 224, 224]),
|
|
|
};
|
|
|
const t2 = Date.now();
|
|
|
- const results = await imageSession.run(feeds);
|
|
|
+ const results = await session.run(feeds);
|
|
|
log.debug(
|
|
|
() =>
|
|
|
`onnx/clip image embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
|
@@ -230,7 +230,7 @@ const getTokenizer = () => {
|
|
|
};
|
|
|
|
|
|
export const clipTextEmbedding = async (text: string) => {
|
|
|
- const imageSession = await onnxTextSession();
|
|
|
+ const session = await onnxTextSession();
|
|
|
const t1 = Date.now();
|
|
|
const tokenizer = getTokenizer();
|
|
|
const tokenizedText = Int32Array.from(tokenizer.encodeForCLIP(text));
|
|
@@ -238,7 +238,7 @@ export const clipTextEmbedding = async (text: string) => {
|
|
|
input: new ort.Tensor("int32", tokenizedText, [1, 77]),
|
|
|
};
|
|
|
const t2 = Date.now();
|
|
|
- const results = await imageSession.run(feeds);
|
|
|
+ const results = await session.run(feeds);
|
|
|
log.debug(
|
|
|
() =>
|
|
|
`onnx/clip text embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|