|
@@ -1,179 +1,6 @@
|
|
|
-import 'dart:math';
|
|
|
-
|
|
|
import 'package:image/image.dart' as imageLib;
|
|
|
-import "package:logging/logging.dart";
|
|
|
-import 'package:photos/services/object_detection/models/predictions.dart';
|
|
|
-import 'package:photos/services/object_detection/models/recognition.dart';
|
|
|
-import "package:photos/services/object_detection/models/stats.dart";
|
|
|
-import "package:tflite_flutter/tflite_flutter.dart";
|
|
|
-import "package:tflite_flutter_helper/tflite_flutter_helper.dart";
|
|
|
-
|
|
|
-/// Classifier
|
|
|
-class ObjectClassifier {
|
|
|
- final _logger = Logger("Classifier");
|
|
|
-
|
|
|
- /// Instance of Interpreter
|
|
|
- late Interpreter _interpreter;
|
|
|
-
|
|
|
- /// Labels file loaded as list
|
|
|
- late List<String> _labels;
|
|
|
-
|
|
|
- /// Input size of image (height = width = 300)
|
|
|
- static const int inputSize = 300;
|
|
|
-
|
|
|
- /// Result score threshold
|
|
|
- static const double threshold = 0.5;
|
|
|
-
|
|
|
- static const String modelFileName = "detect.tflite";
|
|
|
- static const String labelFileName = "labelmap.txt";
|
|
|
-
|
|
|
- /// [ImageProcessor] used to pre-process the image
|
|
|
- ImageProcessor? imageProcessor;
|
|
|
-
|
|
|
- /// Padding the image to transform into square
|
|
|
- late int padSize;
|
|
|
-
|
|
|
- /// Shapes of output tensors
|
|
|
- late List<List<int>> _outputShapes;
|
|
|
-
|
|
|
- /// Types of output tensors
|
|
|
- late List<TfLiteType> _outputTypes;
|
|
|
-
|
|
|
- /// Number of results to show
|
|
|
- static const int numResults = 10;
|
|
|
-
|
|
|
- ObjectClassifier({
|
|
|
- Interpreter? interpreter,
|
|
|
- List<String>? labels,
|
|
|
- }) {
|
|
|
- loadModel(interpreter);
|
|
|
- loadLabels(labels);
|
|
|
- }
|
|
|
-
|
|
|
- /// Loads interpreter from asset
|
|
|
- void loadModel(Interpreter? interpreter) async {
|
|
|
- try {
|
|
|
- _interpreter = interpreter ??
|
|
|
- await Interpreter.fromAsset(
|
|
|
- "models/" + modelFileName,
|
|
|
- options: InterpreterOptions()..threads = 4,
|
|
|
- );
|
|
|
- final outputTensors = _interpreter.getOutputTensors();
|
|
|
- _outputShapes = [];
|
|
|
- _outputTypes = [];
|
|
|
- outputTensors.forEach((tensor) {
|
|
|
- _outputShapes.add(tensor.shape);
|
|
|
- _outputTypes.add(tensor.type);
|
|
|
- });
|
|
|
- _logger.info("Interpreter initialized");
|
|
|
- } catch (e, s) {
|
|
|
- _logger.severe("Error while creating interpreter", e, s);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /// Loads labels from assets
|
|
|
- void loadLabels(List<String>? labels) async {
|
|
|
- try {
|
|
|
- _labels =
|
|
|
- labels ?? await FileUtil.loadLabels("assets/models/" + labelFileName);
|
|
|
- _logger.info("Labels initialized");
|
|
|
- } catch (e, s) {
|
|
|
- _logger.severe("Error while loading labels", e, s);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /// Pre-process the image
|
|
|
- TensorImage _getProcessedImage(TensorImage inputImage) {
|
|
|
- padSize = max(inputImage.height, inputImage.width);
|
|
|
- imageProcessor ??= ImageProcessorBuilder()
|
|
|
- .add(ResizeWithCropOrPadOp(padSize, padSize))
|
|
|
- .add(ResizeOp(inputSize, inputSize, ResizeMethod.BILINEAR))
|
|
|
- .build();
|
|
|
- inputImage = imageProcessor!.process(inputImage);
|
|
|
- return inputImage;
|
|
|
- }
|
|
|
-
|
|
|
- /// Runs object detection on the input image
|
|
|
- Predictions? predict(imageLib.Image image) {
|
|
|
- final predictStartTime = DateTime.now().millisecondsSinceEpoch;
|
|
|
-
|
|
|
- final preProcessStart = DateTime.now().millisecondsSinceEpoch;
|
|
|
-
|
|
|
- // Create TensorImage from image
|
|
|
- TensorImage inputImage = TensorImage.fromImage(image);
|
|
|
-
|
|
|
- // Pre-process TensorImage
|
|
|
- inputImage = _getProcessedImage(inputImage);
|
|
|
-
|
|
|
- final preProcessElapsedTime =
|
|
|
- DateTime.now().millisecondsSinceEpoch - preProcessStart;
|
|
|
-
|
|
|
- // TensorBuffers for output tensors
|
|
|
- final outputLocations = TensorBufferFloat(_outputShapes[0]);
|
|
|
- final outputClasses = TensorBufferFloat(_outputShapes[1]);
|
|
|
- final outputScores = TensorBufferFloat(_outputShapes[2]);
|
|
|
- final numLocations = TensorBufferFloat(_outputShapes[3]);
|
|
|
-
|
|
|
- // Inputs object for runForMultipleInputs
|
|
|
- // Use [TensorImage.buffer] or [TensorBuffer.buffer] to pass by reference
|
|
|
- final inputs = [inputImage.buffer];
|
|
|
-
|
|
|
- // Outputs map
|
|
|
- final outputs = {
|
|
|
- 0: outputLocations.buffer,
|
|
|
- 1: outputClasses.buffer,
|
|
|
- 2: outputScores.buffer,
|
|
|
- 3: numLocations.buffer,
|
|
|
- };
|
|
|
-
|
|
|
- final inferenceTimeStart = DateTime.now().millisecondsSinceEpoch;
|
|
|
-
|
|
|
- // run inference
|
|
|
- _interpreter.runForMultipleInputs(inputs, outputs);
|
|
|
-
|
|
|
- final inferenceTimeElapsed =
|
|
|
- DateTime.now().millisecondsSinceEpoch - inferenceTimeStart;
|
|
|
-
|
|
|
- // Maximum number of results to show
|
|
|
- final resultsCount = min(numResults, numLocations.getIntValue(0));
|
|
|
-
|
|
|
- // Using labelOffset = 1 as ??? at index 0
|
|
|
- const labelOffset = 1;
|
|
|
-
|
|
|
- final recognitions = <Recognition>[];
|
|
|
-
|
|
|
- for (int i = 0; i < resultsCount; i++) {
|
|
|
- // Prediction score
|
|
|
- final score = outputScores.getDoubleValue(i);
|
|
|
-
|
|
|
- // Label string
|
|
|
- final labelIndex = outputClasses.getIntValue(i) + labelOffset;
|
|
|
- final label = _labels.elementAt(labelIndex);
|
|
|
-
|
|
|
- if (score > threshold) {
|
|
|
- recognitions.add(
|
|
|
- Recognition(i, label, score),
|
|
|
- );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- final predictElapsedTime =
|
|
|
- DateTime.now().millisecondsSinceEpoch - predictStartTime;
|
|
|
- _logger.info(recognitions);
|
|
|
- return Predictions(
|
|
|
- recognitions,
|
|
|
- Stats(
|
|
|
- predictElapsedTime,
|
|
|
- predictElapsedTime,
|
|
|
- inferenceTimeElapsed,
|
|
|
- preProcessElapsedTime,
|
|
|
- ),
|
|
|
- );
|
|
|
- }
|
|
|
-
|
|
|
- /// Gets the interpreter instance
|
|
|
- Interpreter get interpreter => _interpreter;
|
|
|
+import "package:photos/services/object_detection/models/predictions.dart";
|
|
|
|
|
|
- /// Gets the loaded labels
|
|
|
- List<String> get labels => _labels;
|
|
|
+abstract class Classifier {
|
|
|
+ Predictions? predict(imageLib.Image image);
|
|
|
}
|